В течение 70-х годов сложились основные теоретические направления исследований в области интеллектуальных систем.
1. Представление знаний. Многие специалисты по интеллектуальным системам считают это направление работ основным. Именно появление знаний в памяти ЭВМ позволило, по их мнению, всерьез говорить о появлении "интеллекта" в программах, реализуемых на ЭВМ. До этого при решении задач на ЭВМ проблема заключалась в написании той процедуры, которую нужно было реализовать на машине, и ее переводе на язык, понятый ЭВМ (т.е. программировании). При появлении в памяти ЭВМ всех необходимых знаний о некоторой фиксированной проблемной области ЭВМ становится способной на основании этих знаний сама синтезировать программы, необходимые для решения поставленных перед ней задач. Другими словами, труд программиста выполняет сама ЭВМ, а человек общается с ней таким же способом, как он это делает, когда общается со своим коллегой по работе.
Представление знаний как ведущее направление в ИИ решает следующие задачи: а) как собрать знания о проблемной области и, в частности, как получить с помощью опроса эти знания от специалистов в данной области; б) как представить эти знания в базе знаний в форме, удобной для последующей обработки на ЭВМ; в) как сохранить непротиворечивость и достичь полноты знаний при объединении знаний, получаемых из различных источников; г) как классифицировать собранные знания и как обобщать их в процессе накопления; д) как их использовать при решении различных задач. Из этого перечисления видно, что при работе со знаниями надо рассматривать как теоретические, так и практические вопросы. Совокупность задач первого типа образует множество проблем теории представления знаний, а совокупность задач второго типа - множество проблем прикладной науки, получившей в искусственном интеллекте название "инженерия знаний" (специалисты, работающие в этой области, подготовка которых усиленными темпами ведется во многих странах, называются инженерами по знаниям или просто инженерами знаний).
В теории представления знаний изучаются формальные системы, которые могут быть использованы при представлении знаний. Среди них наиболее популярными оказались семантические сети, фреймы, сценарии, продукционные системы и разного рода логические исчисления (чаще всего это исчисление предикатов первого порядка). В обзорной работе [36] можно найти оценку современного состояния исследований в области различных моделей представления знаний. Понятие фрейма впервые было введено М.Минским в работе [37], сценарии подобно описаны Р.Шенком (США) в [38], а продукционные системы в [36]. Семантические сети как бы обобщают все эти формы представления знаний [36].
Преобразования знаний, выполняемые в тех или иных моделях их представления, носят, как правило, логический характер. В связи с этим в теории представления знаний большое внимание уделяется созданию специальных логических систем для работы со знаниями [27, 36]. В СССР, в частности, разрабатываются так называемые псевдофизические логики (Д.А.Поспелов, А.С.Нариньяни и др.), предназначенные для описания закономерностей, отражающих временной, пространственный или каузальный аспект действий, совершаемых в реальном физическом мире.
2. Общение. Вторым большим направлением в ИИ являются исследования, касающиеся создания интеллектуальных программ, способных к организации антропоморфного общения интеллектуальной системы с пользователем. Чаще всего имеется в виду общение на ограниченном естественном языке, когда сообщения вводятся в ЭВМ в виде письменного текста или в виде последовательности речевых сигналов, а ответ интеллектуальной системы либо высвечивается на экране дисплея, либо формируется с помощью речевого синтезатора. Исследуется также способ общения, опирающийся на рисование пиктограмм (картинок), но чаще такой способ общения включается в качестве вспомогательного в общение первого типа. В результате интенсивных исследований в области вопросно-ответных и диалоговых систем специалисты по искусственному интеллекту создали теорию таких систем и в настоящее время интеллектуальные системы оказываются способными на имитацию достаточно развитых форм общения с пользователем [36, 39].
3. Рассуждения и планирование. Третье направление в работах по искусственному интеллекту связано с созданием и исследованием различных логических систем, способных воспроизводить в интеллектуальных системах особенности человеческих рассуждений при решении разнообразных задач. В нем рассматриваются проблемы принятия решений в альтернативных ситуациях, а также нахождения и обоснования планов целесообразной деятельности при решении задач, формируемых пользователем или возникающих, как промежуточные, в процессе деятельности интеллектуальных систем [3, 36, 40].
4. Восприятие. Мы уже говорили, что в свое время распознавание образов оказало некоторое влияние на исследования по интеллектуальным системам. Теория распознавания образов в дальнейшем стала развиваться отдельно от работ в области ИИ. Но между ними появилась пограничная область – машинное восприятие, в которой методы каждой из наук переплетаются между собой. К восприятию относятся те задачи обработки зрительных образов, которые для своего решения требуют использования знаний. Такие знания, в частности, используются при анализе и описании трехмерных сцен, в которых отдельные объекты могут закрывать другие или тени, возникающие из условий освещенности, сцен, могут искажать общую картину и т.д. Подобные задачи характерны для тех интеллектуальных систем, которые в процессе своей деятельности должны много контактировать с реальным миром. Но и на уровне информационных представлений о зрительных объектах такие задачи возникают весьма часто [41, 42].
5. Обучение. В отличие от методов и моделей, описанных в ранее упоминавшейся монографии [23], методы, исследуемые в теории обучения интеллектуальных систем, активно опираются на знания. Поэтому, как и восприятие, обучение интеллектуальных систем есть пограничная область между науками, развивающимися вне сферы искусственного интеллекта, и теми методами, которые характерны для интеллектуальных систем. Как правило, методы последнего типа – это процедуры обучения на основании использования информации о подтверждении или неподтверждении некоторых гипотез фактами, хранящимися в базе знаний интеллектуальных систем. Это позволяет считать, что в них развиваются идеи, которые были использованы в упоминавшихся ранее исследованиях [11,24].
6. Деятельность. В этой части теории продолжают активно развиваться исследования в области решения комбинаторных и игровых задач, характерных еще для первого этапа развития работ в области ИИ, а также эвристического программирования [42]. Только на данном этапе развития ИИ происходит осмысление постановок задач в этой области с точки зрения того уровня, который уже достигнут в интеллектуальных системах [43]. А этот уровень стал уже настолько высок, что и в области ИИ стали возникать собственные программные и инструментальные средства. Стали возникать и новые формы деятельности, ранее не встречавшиеся в области интеллектуального программирования. Все это знаменовало наступление нового этапа в развитии искусственного интеллекта.
IY. Переход к промышленным образцам
Начало 80-х годов характеризуется изменением взгляда на ИИ. Если ранее среди большинства специалистов бытовало мнение, что эта область науки представляет весьма специфический и ограниченный интерес, то к началу 80-х это мнение стало стремительно сменяться интересом к исследованиям в области интеллектуальных систем. Это произошло потому, что к тому моменту развитие теории искусственного интеллекта достигло такого уровня, когда на смену "игрушечным" моделям и чисто демонстрационным интеллектуальным программам стали приходить системы, интересные и важные для решения трудных практических задач, которые не могли быть решены ранее известными методами.
Такой подход стал возможен еще и потому, что в 70-х годах появились ЭВМ, обладающие достаточной для решения задач ИИ мощностью и по объему памяти, и по быстродействию. В самом же ИИ стали активно развиваться инструментальные программные средства, ориентированные на специфику программирования возникающих здесь задач. Прежде всего, появилось семейство языков программирования, не ориентированных на решение чисто вычислительных задач (на что были направлены такие традиционные языки программирования как АЛГОЛ, ФОРТРАН и многие другие). Среди этих языков наиболее известными являются языки ЛИСП и ПРОЛОГ. В языке ЛИСП (на самом деле это даже не язык, а целое семейство языков) основное внимание направлено на обработку символьной информации, объединенной в гибкие структуры, называемые списками. В группе логических языков, типичным представителем которой является ПРОЛОГ, чрезвычайно легко реализуются все операции, связанные с логическим выводом - основной операцией, реализуемой в системах типа решателя. Для работы со знаниями стали создаваться специальные языки описания знаний и манипулирования ими. Первые версии таких языков (например, ФРЛ или КРЛ) были достаточно громоздкими, но со временем их эффективность возрастала. Современные версии таких языков (например, системы программирования APT или ОПС-5) весьма удобны для инженеров знаний и хорошо согласуются с архитектурой новых ЭВМ..