Смекни!
smekni.com

Возникновение и перспективы создания искусственного интеллекта (стр. 5 из 7)

В течение 70-х годов сложились основные теоретические направления исследо­ваний в области интеллектуальных систем.

1. Представление знаний. Многие специалисты по интеллектуальным системам считают это направление работ основным. Именно появление знаний в памяти ЭВМ позволило, по их мнению, всерьез говорить о появлении "интеллекта" в програм­мах, реализуемых на ЭВМ. До этого при решении задач на ЭВМ проблема заключалась в написании той процедуры, которую нужно было реализовать на машине, и ее переводе на язык, понятый ЭВМ (т.е. программировании). При появлении в памяти ЭВМ всех необходимых знаний о некоторой фиксированной проблемной области ЭВМ становится способной на основании этих знаний сама синтезировать программы, необходимые для решения поставленных перед ней задач. Другими словами, труд программиста выполняет сама ЭВМ, а человек общается с ней таким же способом, как он это делает, когда общается со своим коллегой по работе.

Представление знаний как ведущее направление в ИИ решает следующие задачи: а) как собрать знания о проблемной области и, в частности, как получить с помощью опроса эти знания от специалистов в данной области; б) как представить эти знания в базе знаний в форме, удобной для последующей обработки на ЭВМ; в) как сохранить непротиворечивость и достичь полноты знаний при объединении знаний, получаемых из различных источников; г) как классифициро­вать собранные знания и как обобщать их в процессе накопления; д) как их использовать при решении различных задач. Из этого перечисления видно, что при работе со знаниями надо рассматривать как теоретические, так и практические вопросы. Совокупность задач первого типа образует множество проблем теории представле­ния знаний, а совокупность задач второго типа - множество проблем прикладной науки, получившей в искусственном интеллекте название "инженерия знаний" (специалисты, работающие в этой области, подготовка которых усиленными темпа­ми ведется во многих странах, называются инженерами по знаниям или просто инженерами знаний).

В теории представления знаний изучаются формальные системы, которые могут быть использованы при представлении знаний. Среди них наиболее популярными оказались семантические сети, фреймы, сценарии, продукционные системы и разного рода логические исчисления (чаще всего это исчисление предикатов перво­го порядка). В обзорной работе [36] можно найти оценку современного состояния исследований в области различных моделей представления знаний. Понятие фрей­ма впервые было введено М.Минским в работе [37], сценарии подобно описаны Р.Шенком (США) в [38], а продукционные системы в [36]. Семантические сети как бы обобщают все эти формы представления знаний [36].

Преобразования знаний, выполняемые в тех или иных моделях их представле­ния, носят, как правило, логический характер. В связи с этим в теории представле­ния знаний большое внимание уделяется созданию специальных логических систем для работы со знаниями [27, 36]. В СССР, в частности, разрабатываются так называемые псевдофизические логики (Д.А.Поспелов, А.С.Нариньяни и др.), предназначенные для описания закономерностей, отражающих временной, пространст­венный или каузальный аспект действий, совершаемых в реальном физическом мире.

2. Общение. Вторым большим направлением в ИИ явля­ются исследования, касающиеся создания интеллектуальных программ, способных к организации антропоморфного общения интеллектуальной системы с пользовате­лем. Чаще всего имеется в виду общение на ограниченном естественном языке, когда сообщения вводятся в ЭВМ в виде письменного текста или в виде последова­тельности речевых сигналов, а ответ интеллектуальной системы либо высвечивается на экране дисплея, либо формируется с помощью речевого синтезатора. Исследуется также способ общения, опирающийся на рисование пиктограмм (картинок), но чаще такой способ общения включается в качестве вспомогательного в общение первого типа. В результате интенсивных исследований в области вопросно-ответ­ных и диалоговых систем специалисты по искусственному интеллекту создали теорию таких систем и в настоящее время интеллектуальные системы оказываются способными на имитацию достаточно развитых форм общения с пользователем [36, 39].

3. Рассуждения и планирование. Третье направление в работах по искусствен­ному интеллекту связано с созданием и исследованием различных логических систем, способных воспроизводить в интеллектуальных системах особенности чело­веческих рассуждений при решении разнообразных задач. В нем рассматриваются проблемы принятия решений в альтернативных ситуациях, а также нахождения и обоснования планов целесообразной деятельности при решении задач, формируемых пользователем или возникающих, как промежуточные, в процессе деятельности интеллектуальных систем [3, 36, 40].

4. Восприятие. Мы уже говорили, что в свое время распознавание образов оказало некоторое влияние на исследования по интеллектуальным системам. Тео­рия распознавания образов в дальнейшем стала развиваться отдельно от работ в области ИИ. Но между ними появилась пограничная область – машинное восприятие, в которой методы каждой из наук переплетаются между собой. К восприятию относятся те задачи обработки зрительных образов, которые для своего решения требуют использования знаний. Такие знания, в частности, используются при анализе и описании трехмерных сцен, в которых отдельные объекты могут закрывать другие или тени, возникающие из условий освещенности, сцен, могут искажать общую картину и т.д. Подобные задачи характерны для тех интеллекту­альных систем, которые в процессе своей деятельности должны много контактировать с реальным миром. Но и на уровне информационных представлений о зрительных объектах такие задачи возникают весьма часто [41, 42].

5. Обучение. В отличие от методов и моделей, описанных в ранее упоминав­шейся монографии [23], методы, исследуемые в теории обучения интеллектуаль­ных систем, активно опираются на знания. Поэтому, как и восприятие, обучение интеллектуальных систем есть пограничная область между науками, развивающи­мися вне сферы искусственного интеллекта, и теми методами, которые характерны для интеллектуальных систем. Как правило, методы последнего типа – это процеду­ры обучения на основании использования информации о подтверждении или неподтверждении некоторых гипотез фактами, хранящимися в базе знаний интел­лектуальных систем. Это позволяет считать, что в них развиваются идеи, которые были использованы в упоминавшихся ранее исследованиях [11,24].

6. Деятельность. В этой части теории продолжают активно развиваться иссле­дования в области решения комбинаторных и игровых задач, характерных еще для первого этапа развития работ в области ИИ, а также эвристического программирова­ния [42]. Только на данном этапе развития ИИ происходит осмысление постановок задач в этой области с точки зрения того уровня, который уже достигнут в интеллектуальных системах [43]. А этот уровень стал уже настолько высок, что и в области ИИ стали возникать собственные программные и инструментальные средства. Стали возникать и новые формы деятельности, ранее не встречавшиеся в области интеллектуального программирования. Все это знаменовало наступление нового этапа в развитии искусственного интеллекта.

IY. Переход к промышленным образцам

Начало 80-х годов характеризуется изменением взгляда на ИИ. Если ранее среди большинства специалистов бытовало мнение, что эта область науки представляет весьма специфический и ограниченный интерес, то к началу 80-х это мнение стало стремительно сменяться интересом к исследованиям в области интеллектуальных систем. Это произошло потому, что к тому моменту развитие теории искусственного интеллекта достигло такого уровня, когда на смену "игрушечным" моделям и чисто демонстрационным интеллектуальным програм­мам стали приходить системы, интересные и важные для решения трудных практи­ческих задач, которые не могли быть решены ранее известными методами.

Такой подход стал возможен еще и потому, что в 70-х годах появились ЭВМ, обладающие достаточной для решения задач ИИ мощностью и по объему памяти, и по быстродействию. В самом же ИИ стали активно развиваться инструментальные программ­ные средства, ориентированные на специфику программирования возникающих здесь задач. Прежде всего, появилось семейство языков программирования, не ориентированных на решение чисто вычислительных задач (на что были направле­ны такие традиционные языки программирования как АЛГОЛ, ФОРТРАН и многие другие). Среди этих языков наиболее известными являются языки ЛИСП и ПРО­ЛОГ. В языке ЛИСП (на самом деле это даже не язык, а целое семейство языков) основное внимание направлено на обработку символьной информации, объединен­ной в гибкие структуры, называемые списками. В группе логических языков, типичным представителем которой является ПРОЛОГ, чрезвычайно легко реализуются все операции, связанные с логическим выводом - основной операцией, реализуемой в системах типа решателя. Для работы со знаниями стали создаваться специальные языки описания знаний и манипулирования ими. Первые версии таких языков (например, ФРЛ или КРЛ) были достаточно громоздкими, но со временем их эффективность возрастала. Современные версии таких языков (например, системы программирования APT или ОПС-5) весьма удобны для инженеров знаний и хорошо согласуются с архитектурой новых ЭВМ..