Смекни!
smekni.com

Линейное программирование 2 3 (стр. 3 из 6)

Тогда любая точка минимума

представима в виде


где

. Минимальное значение целевой функции

Ответ: бесконечное множество решений

, где
и
.

Задача 7 (16.216)

Решить задачу линейного программирования симплекс - методом, находя начальную угловую точку методом искусственного базиса.

Решение:

Матрица системы имеет вид

.

Ее ранг равен 3. Введем дополнительные переменные

и запишем условие вспомогательной задачи линейного программирования для рассматриваемого случая:

Считая дополнительные переменные

базисными, запишем симплекс таблицу этой задачи, соответствующую угловой точке
:

3

-2

3

2

9

1

2

-1

1

0

-1

-1

2

1

6

-3

1

-4

-4

-15

Произведем преобразования исходной симплекс-таблицы симплекс-методом следующим образом:

1) смотрим на нижнюю строку – выбираем тот столбец, в котором нижний элемент отрицательный, если таких столбцов несколько, то выбираем любой (в нашем случае выбираем первый столбец

);

2) далее смотрим на последний и выбранный столбцы – сравниваем отношения элементов последнего и выбранного столбцов (в выбранном столбце берем только положительные числа), и выбираем тот элемент выбранного столбца, где отношение элементов будет наименьшим (в нашем случае 9/3 и 0/1, так как второе отношение наименьшее, следовательно, опорным элементом будет 1);

3) меняем местами переменные

и
, остальные переменные оставляем на своих местах;

4) на место опорного элемента ставим отношение 1/(опорный элемент);

5) на остальных местах разрешающей строки записываем соответствующие элементы исходной таблицы, деленные на опорный элемент;

6) на свободные места разрешающего столбца ставим со знаком минус соответствующие элементы исходной таблицы, деленные на опорный элемент;

7) оставшиеся свободные места в новой симплекс-таблице заполняем построчно следующим образом: из строки элементов исходной таблицы вычитаем произведение ее элемента из разрешающего столбца на уже заполненную разрешающую строку новой таблицы.

Производя преобразования симплекс-метода, получим такую последовательность симплекс-таблиц:

-3

-8

6

-1

9

1

2

-1

1

0

1

1

1

2

6

3

7

-7

-1

-15

-2

-6

5

1

9

1

2

-1

1

0

-1

-3

3

-2

6

4

9

-8

1

-15

-2/5

-6/5

1/5

1/5

9/5

3/5

4/5

1/5

6/5

9/5

1/5

3/5

-3/5

-13/5

3/5

4/5

-3/5

8/5

13/5

-3/5

0

2

-1

-5

3

1/3

-4/3

1

14/3

1

1/3

5/3

-1

-13/3

1

1

1

1

0

0

В нижней строке последней симплекс-таблицы нет отрицательных элементов, следовательно, минимум вспомогательной целевой функции достигнут и

есть угловая точка допустимого множества исходной задачи линейного программирования, тогда