Розбиваємо дану схему на блоки:
Перший блок :
R1 = 0.4; L1 =0.5 ; C1 = 1.5 ;
Враховуючи наступні формули отримуємо структурну схему моделі :
Математична модель у вигляді передавальних функцій :
Математична модель у вигляді диференційного рівняння :
5). Алгоритм рішення (рекурентне співвідношення) та його програмна реалізація в пакеті MATLAB
Розроблюемо алгоритм рішення (рекурентне співвідношення) та його програмну реалізацію в пакеті MATLAB метод прямокутників.
Для рішення використаемо частину схеми яка мае математичну модель у вигляді диференційного рівняння :
Для запису рекурсивного співвідношення може бути використоване підхід який обгрунтован на Z перетворенні та операторного методу при учете співідношення.
Записуемо діференційне рівняння у термінах D та I.
Замість параметру інтегрування підставимо:
Розділимо отримане рівняння на найвищу степінь z.
Рекуррентное співвідношення має вигляд:
Дослідження моделі на адекватність при заданих типових впливах:
Для дослідження моделі на адекватність використаємо сигнал типу константа;
Мал 1.
В результаті подання сигналу на вход схеми був отриман вихідний сигнал який зображений на малюнку
Мал. 2
Виходячи з отриманого графіку можна зробити висновок, що вихідний сигнал сходиться.
2) Подамо на вхід схеми сигнал у вигляді б-функцій;
Мал.3
В результаті на виході схеми отримаемо сигнал який має свойства сходження
Даний сигнал зображений на малюнку 4;
Мал.4
3) Подамо на вхід схеми, сигнал у вигляді синусоїди
При подачі на вхід схеми, сигналу у вигляді синусоїди отримаємо вихідний сигнал
ал.5
У результаті отримаємо на виході сигнал який має свойство несходження.
Даний сигнал зображений на малюнку 6;
Мал.6
4) Подамо на схему сигнал у вигляді експонента;
Мал.7
На виході отримаємо сигнал який зображений на малюнку 8
мал.8
Висновок:
В результаті виконання данної роботи були проведені розробка схеми дослідження, побудовані математични моделі частин схеми, а також проаналізована робота схеми при подачі різних сигналів.