где
исходное, не квантованное, значение спектрального коэффициента, а соответствующий ему по положению в матрице элемент матрицы квантования. Матрица квантования построена по зональному принципу, составляющие ее числа представляют собой величины равные , где m - число уровней, на которое квантуется спектральный коэффициент, входящий в соответствующую зону. Эта процедура интересна тем, что процесс целочисленного деления с одной стороны обеспечивает приведение спектральных коэффициентов к значениям одного порядка, а с другой стороны благодаря имеющему при этом место округлению достигается собственно квантование. После выполнения операции квантования мы получаем матрицу проквантованных спектральных коэффициентов , особенностью, которой является наличие большого количества малых и нулевых спектральных коэффициентов, расположенных преимущественно в правом нижнем углу матрицы. При восстановлении сжатого изображения значения проквантованных спектральных коэффициентов умножаются поэлементно на значения соответствующих коэффициентов матрицы квантования .Следующий шаг алгоритма сжатия состоит в преобразовании полученной матрицы квантованных спектральных коэффициентов
в вектор из 64 элементов, в котором малые и нулевые спектральные коэффициенты должны быть по возможности сгруппированы. Эта цель достигается путем применения так называемого зигзаг-сканирования, показанного на рис. 4.1. Поскольку в началеРис. 4.1.
зигзаг-сканирования считываются спектральные коэффициенты с большими амплитудами, а в конце - спектральные коэффициенты, величина которых мала или равна нулю, получающаяся в результате этого сканирования последовательность чисел будет в конце содержать длинные последовательности нулей. Эта особенность используется для дальнейшего сжатия данных путем энтропийного кодирования, которое состоит в последовательном применении метода кодирования длин серий и кода Хаффмена. Из ряда спектральных коэффициентов образуются пары чисел, одно из которых равно значению ненулевого спектрального коэффициента, а другое - количеству предшествующих этому спектральному коэффициенту нулей. Полученные таким образом пары сжимаются посредством применения кода Хаффмена с фиксированной таблицей. В этой таблице наиболее вероятным значениям полученных чисел, которые соответствуют малым последовательностям нулей и малым значениям ненулевых спектральных коэффициентов ставятся в соответствие короткие коды. Поскольку код Хаффмена является префиксным, то в данном случае не требуется разделителей между кодовыми словами.
Алгоритм декодирования повторяет все перечисленные операции, но в обратном порядке.
Достоинством описанного метода является высокий коэффициент сжатия, который для цветных изображений при хорошем качестве их восстановления может достигать 6 – 10. Величина коэффициента сжатия изображений при их записи в файл может регулироваться посредством специальной опции, которая соответствующим образом изменяет коэффициенты матрицы квантования
. С помощью этой регулировки устанавливается допустимая степень ухудшения сжимаемого изображения, как, например, это сделано в графическом редакторе PhotoShop. Чем большая степень сжатия выбрана, тем большие искажения будут в восстановленном изображении. При недопустимо больших степенях сжатия если не принято специальных мер на восстановленном изображении будет просматриваться блочная структура, так называемый эффект забора, заклеенного объявлениями. В настоящее время этот метод сжатия широко применяется практически во всех графических редакторах.Мультимедиа технологии – это совокупность программно-аппаратных средств, реализующих обработку информации в звуковом и зрительном виде. Каждый из нас не раз слышал, что "компьютер может все". Однако, в реальной жизни мы не имели убедительных подтверждений подобных высказываний прежде всего потому, что имелись в виду потенциальные возможности компьютера, известные, в основном, узкому кругу специалистов. Ситуация существенно изменилась с появлением мультимедиа технологий, позволяющих раскрыть этот потенциал в привычной информационной среде.
Графика, анимация, фото, видео, звук, текст в интерактивном режиме работы создают интегрированную информационную среду, в которой пользователь обретает качественно новые возможности. Самое широкое применение мультимедиа технологии нашли в образовании - от детского до пожилого возраста и от вузовских аудиторий до домашних условий. Мультимедиа продукты успешно используются в различных информационных, демонстрационных и рекламных целях, внедрение мультимедиа в телекоммуникации стимулировало бурный рост новых применений. В данной работе, на основе методическо - информационных материалов были рассмотрены возможности ММТ в области обработки изображений, по средствам которых можно, к примеру, обработать фотографии, «качественно» передать информацию от пользователя к пользователю, компактно хранить информацию на жестких дисках ПК, создавать постеры или работать с иллюстрациями – любые преобразования с изображениями хоть в профессиональной сфере, хоть на бытовом уровне.
СПИСОК ЛИТЕРАТУРЫ
1. Красильников Н.Н. Цифровая обработка изображений. - М.: Вузовская книга, 2001.- 319 с.
2. Красильников Н.Н., Красильникова О.И. Мультимедиатехнологии в информационных сетях. Методы сжатия и форматы записи графической информации: Учеб. Пособие. СПбГУАП. СПб., 2004.- 68 с
3. Информационный ресурс: http://www.dialektika/com/books/5-8459-0888-4/html.