Смекни!
smekni.com

Мультимедийные технологии (стр. 6 из 7)

Как уже указывалось, средний квадрат шума квантования прямо пропорционален среднему квадрату квантуемого сигнала. Применительно к рассматриваемому случаю это значит, что средний квадрат шума квантования спектрального коэффициента

будет равен

, (3.11)

где

- средний квадрат шума квантования сигнала на
уровней, при условии, что средний квадрат самого квантуемого сигнала равен единице, а распределение его по яркости описывается плотностью вероятности
,
- число двоичных единиц кода. Средний же квадрат шума преобразования (квантования), равен сумме средних квадратов шумов, возникающих при квантовании каждого спектрального коэффициента

. (3.12)

Для того, чтобы обеспечить минимальное значение

, поступим следующим образом. Вначале выделим для представления каждого спектрального коэффициента нулевое количество двоичных единиц кода и найдем значения средних квадратов шумов квантования, которые при этом возникают. Поскольку в этом случае мы совершили усечение (отбрасывание) спектральных коэффициентов, значения средних квадратов шумов квантования будут равны средним квадратам самих спектральных коэффициентов, т.е.
, а
- их сумме. Далее, выбираем из всех значений
самое большое, выделяем спектральному коэффициенту, которому соответствует это самое большое значение среднего квадрата шума квантования, одну двоичную единицу кода, уменьшаем
на единицу и рассчитываем для него по формуле (3.11) новое значение среднего квадрата шума квантования
. После этого снова сравниваем между собой все значения
, опять находим наибольшее и снова выделяем одну двоичную единицу кода наиболее “шумящему” спектральному коэффициенту, уменьшая при этом
на единицу. Так повторяем до тех пор, пока не будут израсходованы все двоичные единицы кода
. Как не трудно видеть, при таком распределении двоичных единиц мы обеспечиваем минимальный уровень шума преобразования. Заключительным этапом описанной процедуры является объединение спектральных коэффициентов, для представления которых выделено одинаковое количество двоичных единиц кода, в зоны.

Обратим внимание, что описанный метод распределения двоичных единиц кода между спектральными коэффициентами еще не гарантирует минимальной заметности шума преобразования на изображении после его декодирования. Объясняется это тем, что различные спектральные компоненты различно воспринимаются зрительной системой. Поэтому для того, чтобы достичь минимальной заметности шума преобразования на декодированном изображении, описанную процедуру необходимо выполнять, используя для этого не средние квадраты шума квантования, а их средневзвешенные значения.

Рассмотрим, как проявляется шум квантования, а также внешний шум на декодированных изображениях. Поскольку результирующий уровень шума преобразования является результатом одновременного воздействия всех шумовых компонент, возникающих при квантовании спектральных коэффициентов, то в силу центральной предельной теоремы его распределение будет близким к нормальному. Так как средние квадраты шума квантования всех спектральных коэффициентов близки между собой вследствие примененной стратегии распределения двоичных единиц, его спектральный состав будет близок к спектральному составу квазибелого шума. Что же касается проявления на изображении внешней помехи при его передаче по каналу связи в сжатом виде, то здесь все зависит от ее характера. Например, редкая импульсная помеха проявляется в том, что отдельные блоки изображения передаются неверно, поэтому на них пропечатываются базисные изображения, соответствующие тем спектральным коэффициентам, которые были переданы с ошибкой.

11 СЖАТИЕ ИЗОБРАЖЕНИЙ В ФОРМАТЕ JPEG

В формате записи изображений JPEG использован метод сжатия с применением дискретного косинусного преобразовании, т.е. метод сжатия с потерями информации. Аббревиатура JPEG означает название организации, разработавшей этот стандарт, - JointPhotographicExpertsGroup (Объединенная группа экспертов по фотографии). Этот формат предусматривает сжатие, как черно-белых полутоновых изображений, так и цветных. Рассмотрим случай сжатия цветных изображений как более общий. В цветном изображении каждый пиксел представлен 3-мя байтами, по байту на красный (R), зеленый (G) и синий (B) цвета.

Сжатие изображения начинается с того, что оно разбивается на отдельные блоки размером 16х16 отсчетов каждый, которые затем сжимаются независимо друг от друга.

Далее, в каждом блоке от 3-х матриц отсчетов для красной (R), зеленой (G) и синей (B) компонент изображения, осуществляют переход к 3-м матрицам, представляющим яркостную (Y) и две цветностных (Cb) и (Cr) компоненты изображения. Компоненты (Cb) и (Cr) являются аналогами цветоразностных сигналов в хорошо известной совместимой системе цветного телевидения SECAM. В отличие от компонентов (R),(G),(B) компонент (Y) включает в себя только информацию о яркости пикселов, а компоненты (Cb) и (Cr) содержат информацию только об их цвете и насыщенности этого цвета. Поскольку острота зрения человека при наблюдении чисто хроматических изображений (purechromatic) существенно ниже, чем при наблюдении изображений, имеющих только яркостный контраст (achromatic), переход к компонентам (Cb) и (Cr) выгоден, так как позволяет при их кодировании использовать меньшее количество отсчетов в блоке и за счет этого получить дополнительное сжатие. Этот переход (перекодирование) осуществляется следующим образом

,

,

.

Далее матрица, представляющая яркостную компоненту и имеющая размер

отсчетов, разделяется на 4 матрицы размером
отсчетов каждая, а две цветностных матрицы (Cb) и (Cr) путем прореживания по строкам и столбцам преобразуются в две цветностных матрицы (Cb) и (Cr) размером
. При прореживании этих матриц из них исключаются каждая вторая строка и каждый второй столбец. Такое преобразование оказывается допустимым, поскольку, как уже отмечалось выше, наше зрение имеет пониженную остроту при наблюдении чисто хроматических изображений. На этом этапе сжатия, с одной стороны, в сжимаемое изображение вносятся необратимые искажения за счет прореживания, т.е. происходит потеря информации, а с другой - имеет место его сжатие в два раза. Действительно, до прореживания полное количество отсчетов, которыми был представлен блок изображения, равнялось
, в то время как после прореживания только 384.

Затем каждый из отсчетов шести матриц размером

отсчетов подвергается ДКП, квантованию на 4096 уровней и представляется 12-разрядным двоичным кодом. При этом получаются шесть матриц спектральных коэффициентов, 4 из которых представляют собой компоненту (Y), а две представляют компоненты (Cb) и (Cr). Основное сжатие достигается на этапе квантования спектральных коэффициентов благодаря тому, что спектральные коэффициенты с большими индексами, на долю которых приходится малая доля энергии изображения, квантуются на малое число уровней (или усекаются), и, следовательно, на их представление затрачивается мало двоичных единиц кода. На этом этапе также имеет место потеря информации, так как в изображение вносятся необратимые искажения (шум квантования). Процесс квантования заключается в том, что матрица спектральных коэффициентов целочисленно поэлементно делится на матрицу квантования, имеющую такую же размерность, что и блоки спектральных коэффициентов, т.е.
. При этом значение проквантованного спектрального коэффициента
определяется следующим образом