Смекни!
smekni.com

Мультимедийные технологии (стр. 4 из 7)

Существуют два метода отбора спектральных коэффициентов: зональный и пороговый. Первый метод заключается в том, что заранее, исходя из статистики изображений, в матрице спектральных коэффициентов выделяются зоны и все спектральные коэффициенты, входящие в одну зону, квантуются на одно и то же число уровней, как это показано на рис. 3.1.

Рис. 3.1.

Второй метод состоит в том, что сохраняются только те спектральные коэффициенты, амплитуда которых превышает заранее установленный порог. Этот метод отбора сложнее зонального, поскольку кроме передачи (записи) значений спектральных коэффициентов необходимо также передавать (записывать) их индексы.

Перед тем как переходить к более детальному рассмотрению метода сжатия данных, основанного на применении ортогональных преобразований, сравним его с ДКИМ. Общим для этих двух методов является двухэтапная обработка изображений, включающая в себя декорреляцию и последующее оптимальное кодирование сигнала. Важное различие между ДКИМ и методом сжатия с использованием ортогональных преобразований состоит в том, что в первом случае имеет место декорреляция за счет предсказания, при которой используется “локальная” статистика изображения, в то время как во втором случае имеет место декорреляция за счет укрупнения и, следовательно, используется “средняя” статистика изображения. При передаче стационарных изображений эта особенность не играет роли, и оба метода сжатия дают близкие результаты. Если же изображение не стационарно, как например, при передаче мелкомасштабного объекта на фоне поля с медленно изменяющейся яркостью, это различие в способе декорреляции весьма существенно. На той части изображения, где расположен мелкомасштабный объект, “текущее” значение коэффициента автокорреляции между сигналами от соседних отсчетов невелико (

), поэтому его сжатие посредством ДКИМ оказывается неэффективным. В то же время значение коэффициента автокорреляции
, усредненное по всему изображению, может быть близким к единице, благодаря чему будет обеспечиваться высокая эффективность сжатия методом, использующим ортогональные преобразования.Рассмотрим более подробно ортогональные преобразования предварительно дискретизированных изображений, представляемых в виде массива (матрицы) чисел
размером
, где
– номер строки,
- номер столбца (номер отсчета в строке). Следует обратить внимание на то, что в этой записи порядок указания координат точки отсчета яркости на изображении изменен на обратный, т.е. вместо обозначения
мы пишем
. Это делается для согласования с формой записи, принятой в матричном анализе, где первая координата обозначает номер строки, а вторая – номер столбца. Спектральные коэффициенты
находятся путем прямого ортогонального преобразования изображения следующим образом

,

где

- ядро прямого преобразования (базисные функции, по которым происходит разложение);
- индексы спектральных коэффициентов, определяющие их принадлежность в соответствующей базисной функции, а также положение в матрице спектральных коэффициентов, которая имеет тот же размер, что и преобразуемое изображение. Исходное изображение (массив чисел
) находится путем обратного ортогонального преобразования

,

где

- ядро обратного преобразования. Если преобразование разделимо, т.е. если

,
,

а нас будут интересовать разделимые преобразования, то оно может быть выполнено в два этапа, вначале по всем столбцам, а затем по всем строкам

, (3.5)

и соответственно

. (3.6)

Для удобства записи и вычислений используют матричный аппарат. В матричной форме разделимые ортогональные преобразования записываются следующим образом

,
, (3.7)

где

- ортогональные матрицы прямого преобразования по столбцам и строкам,
- ортогональные матрицы обратного преобразования по столбцам и строкам,
и
- матрицы, полученные в результате транспонирования матриц
и
;

,

- матрица спектральных коэффициентов, получаемая в результате двумерного ортогонального преобразования,

.

Учитывая, что

,
, а также соотношения
и
, справедливые для ортогональных матриц, имеем

, (3.8)

где

,
- матрицы, полученные в результате обращения матриц
.

Базисные функции

,
,
,
в формулах (3.5) и (3.6) (или, что - то же самое, ортогональные матрицы в формулах (3.7) и (3.8)) определяются применяемым ортогональным преобразованием. Так, например, в случае двумерного дискретного преобразования Фурье (ДПФ) базисные функции представляют собой комплексные экспоненты, а сами ортогональные преобразования имеют вид

,

,

в этих формулах множитель

имеет смысл пространственной частоты,
.

Известно, что (ДПФ) не является лучшим преобразованием для применения в целях сжатия данных, т.к. значения спектральных коэффициентов в области высоких пространственных частот при этом преобразовании имеют сравнительно высокие значения. В настоящее время при сжатии изображений широкое распространение получило дискретное косинусное преобразование (ДКП). Среди других ранее применявшихся ортогональных преобразования при сжатии изображений следует назвать: преобразование Адамара (ПА), преобразование Хаара (ПХ), наклонное преобразование (slanttransform).