В различных вычислительных машинах использовались различные подходы, направленные на достижение, в первую очередь, одной из следующих целей:
- максимальная арифметическая производительность процессора;
- эффективность работы операционной системы и удобство общения с ней для программиста;
- эффективность трансляции с языков высокого уровня и исключение написания программ на автокоде;
- эффективность распараллеливания алгоритмов для параллельных архитектур.
Однако, в любой машине необходимо в той или иной форме решать все указанные задачи. Отметим, что сначала этого пытались достичь с помощью одного или нескольких одинаковых процессоров.
Дифференциация функций и специализация отдельных подсистем начала развиваться с появления отдельных подсистем и процессоров для обслуживания ввода/вывода, коммуникационных сетей, внешней памяти и т.п.
В суперЭВМ кроме основного процессора (машины) включались внешние машины. В различных системах можно наблюдать элементы специализации в направлениях автономного выполнения функций операционной системы, системы программирования и подготовки заданий.
Во-первых, эти вспомогательные функции могут выполняться параллельно с основными вычислениями. Во-вторых, для реализации не требуются многие из тех средств, которые обеспечивают высокую производительность основного процессора, например, возможность выполнения операций с плавающей запятой и векторных операций. В дальнейшем, при интеграции скалярной, векторной и параллельной обработки в рамках единой вычислительной подсистемы состав этих вспомогательных функций должен быть дополнен функциями анализа программ с целью обеспечения требуемого уровня параллелизма и распределения отдельных частей программы по различным ветвям вычислительной подсистемы.
Появление суперЭВМ сопровождалось повышением их общей мощности потребления (выше 100 кВт) и увеличением плотности тепловых потоков на различных уровнях конструкции. Их создание не в последнюю очередь оказалось возможным, благодаря использованию эффективных жидкостных и фреоновых систем охлаждения. Является ли значительная мощность существенным признаком суперЭВМ? Ответ на этот вопрос зависит от того, что вкладывается в понятие суперЭВМ.
Если считать, что суперЭВМ или, точнее, суперсистема - это система с наивысшей возможной производительностью, то энергетический фактор остается одним из определяющих эту производительность. По мере развития технологии мощность одного вентиля в микропроцессорах уменьшается, но при повышении производительности процессора за счет параллелизма общая мощность в ряде случаев растет. При объединении большого числа микропроцессоров в системе с массовым параллелизмом интегральная мощность и тепловыделение становятся соизмеримыми с аналогичными показателями для векторно-конвейерных систем. Однако, иногда в рекламных целях параллельные системы с небольшим числом процессоров сравниваются с суперкомпьютерами предыдущего или более раннего поколений, чтобы показать их преимущества в смысле простоты и удобства эксплуатации. Естественно, из такого некорректного сравнения нельзя сделать вывод о целесообразности создания современных суперсистем.
Основным стимулом создания суперсистем являются потребности решения больших задач. В свою очередь, исследования и разработки по суперсистемам стимулируют целый комплекс фундаментальных и прикладных исследований, результаты которых используются в дальнейшем в других областях. Прежде всего, это касается архитектуры и схемотехники вычислительных машин, высокочастотных интегральных схем и средств межсоединений, эффективных систем отвода тепла. Не менее важны результаты по методам распараллеливания при выполнении отдельных операций и участков программ на аппаратном уровне, методам построения параллельных алгоритмов, языков и программных систем для эффективного решения больших задач.
В развитии вычислительных средств можно выделить три основные проблемы:
- повышение производительности;
- повышение надежности;
- покрытие семантического разрыва.
Этапы развития вычислительных средств принято различать по поколениям машин. Характеристика поколения определяется конкретными показателями, отражающими достигнутый уровень в решении трех перечисленных проблем. Поскольку подавляющий вклад в развитие вычислительных средств всегда принадлежал технологическим решениям, основополагающей характеристикой поколения машин считалась элементная база. И действительно, переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности, надежности и сокращения семантического разрыва.
В настоящее время актуальным является переход к новым поколениям вычислительных средств. По сложившейся традиции решающая роль отводится технологии производства элементной базы. В то же время становится очевидным, что технологические решения утратили монопольное положение. Так, например, в ближайшей перспективе заметно возрастает значение проблемы покрытия семантического разрыва, что отражается в необходимости создания высокосложных программных продуктов и требует кардинального снижения трудоемкотси программирования. Эта проблема решается преимущественно архитектурными средствами. Роль технологии здесь может быть только косвенной: высокая степень интеграции создает условия для реализации архитектурных решений.
В настоящее время одним из доминируюших направлений развития суперЭВМ являются вычислительные системы c MIMD-параллелизмом на основе матрицы микропроцессоров. Для создания подобных вычислительных систем, состоящих из сотен и тысяч связанных процессоров, потребовалось преодолеть ряд сложных проблем как в программном обеспечении (языки Parallel Pascal, Modula-2, Ada), так и в аппаратных средствах (эффективная коммутационная среда, высокоскоростные средства обмена, мощные микропроцессоры). Элементная база современных выcокопроизводительных систем характеризуется выcокой степенью интеграции (до 3,5 млн. транзисторов на кристалле) и высокими тактовыми частотами (до 600 МГц).
В настоящее время все фирмы и все университеты США, Западной Европы и Японии, разрабатывающие суперЭВМ, ведут интенсивные исследования в области многопроцессорных суперЭВМ с массовым параллелизмом, создают множество их типов, организуют их производство и ускоренными темпами осваивают мировой рынок в этой области. Многопроцессорные ЭВМ с массовым параллелизмом уже сейчас существенно опережают по производительности традиционные суперЭВМ с векторно-конвейерной архитектурой. Системы с массовым параллелизмом предъявляют меньшие требования к микропроцессорам и элементной базе и имеют значительно меньшую стоимость при любом уровне производительности, чем векторно-конвейерные суперЭВМ.
На ежегодной конференции в Чепел-Хилл (Сев.Каролина) представлен проект фирмы IBM, целью которого является создание гиперкубического параллельного процесора в одном корпусе. Конструкция, названная Execube, имеет 8 16-разрядных микропроцесоров, встроенных в кристалл 4Мбит динамического ЗУ (ДЗУ). При этом степень интеграци составляет 5 млн. транзисторов. Микросхема изготовлена по КМОП-технологии с тремя уровнями металлизации на заводе IBM Microelectronic (Ясу, Япония). Execube представляет собой попытку повышения степени интеграции процессора с памятью путем более эффективного доступа к информации ДЗУ. По существу, память превращается в расширенные регистры процессоров. Производительность микросхемы составляет 50 млн оп/с.
Фирма CRAY Research обёявила о начале выпуска суперкопьютеров CRAY T3/E. Основная характеристика, на которой акцентировали внимание разработчики - масштабируемость. Минимальная конфигурация составляет 8 микропроцессоров, максимальная - 2048. По сравнению с предыдущей моделью T3/D соотношение цена/производительность снижена в 4 раза и составляет 60 долл/Мфлопс, чему способствовало применение недорогих процессоров DEC Alpha EVC, изготовленных по КМОП-технологии. Предполагаемая стоимость модели Т3/Е на основе 16 процессоров с 1-Гбайт ЗУ составит 900 тыс. долларов, а цена наиболее мощной конфигурации (1024 процессора, ЗУ 64 Гбайт) -39,7 млн. долларов при пиковой производительности 600 Гфлопс.
Одним из способов дальнейшего повышения производительности вычислительной системы является объединение суперкомпьютеров в кластеры при помощи оптоволоконных соединений. С этой целью компьютеры CRAY T3/E снабжены каналами ввода/вывода с пропускной способностью 128 Гбайт/с. Потенциальные заказчики проявляют повышенный интерес к новой разработке фирмы. Желание приобрести компьютер изъявили такие организации как Pittsburgh Supercomputer Center, Mobile Oil, Департамент по океанографии и атмосферным исследованиям США. При этом подписано несколько контрактов на изготовление нескольких компьютеров 512-процессорной конфигурации.
Среди японских компаний следует выделить фирму Hitachi, которая выпустила суперкомпьютер SR2201 с массовым параллелизмом, содержащий до 2048 процесоров. В основе системы переработанная компанией процессорная архитектура RA-RISC от фирмы Hewlett-Paccard. Псевдовекторный процессор функционирует под управлением ОС HP-UX/MPP Mash 3.0. В компьютере, кроме того, использована система поддержки параллельного режима работы Express, созданная корпорацией Parasoft и получившая название ParallelWare. Производительность нового компьютера составляет 600 Гфлопс.
4. КРАТКИЕ ХАРАКТЕРИСТИКИ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СУПЕРКОМПЬЮТЕРОВ
IBM RS/6000 SP
Производитель | International Business Machines (IBM), подразделение RS/6000. |
Класс архитектуры | Масштабируемая массивно-параллельная вычислительная система (MPP). |
Узлы | Узлы имеют архитектуру рабочих станций RS/6000. Существуют несколько типов SP-узлов, которые комплектуются различными процессорами: PowerPC 604e/332MHz, POWER3/200 и 222 MHz (более ранние системы комплектовались процессорами POWER2). High-узлы на базе POWER3 включают до 8 процессоров и до 16 GB памяти. |
Масштабируе-мость | До 512 узлов. Возможно совмещение узлов различых типов. Узлы устанавливаются в стойки (до 16 узлов в каждой). |
Коммутатор | Узлы связаны между собой высокопроизводительных коммутатором (IBM high-performance switch), который имеет многостадийную структуру и работает с коммутацией пакетов. |
Cистемное ПО | OC AIX (устанавливается на каждом узле), система пакетной обработки LoadLeveler, параллельная файловая система GPFS, параллельная СУБД INFORMIX-OnLine XPS. Параллельные приложения исполняются под управлением Parallel Operating Environment (POE). |
Средства программирова-ния | Оптимизированная реализация интерфейса MPI, библиотеки параллельных математических подпрограмм - ESSL, OSL. |
Обзор | Обзор архитектуры суперкомпьютеров серии RS/6000 SP корпорации IBM. |