Смекни!
smekni.com

Моделирование непрерывно-стохастической модели на ЭВМ (стр. 2 из 3)

где

и
- параметры спектральной плотности,

,
,
и
- коэффициенты уравнения,

и начальными условиями:

и временем моделирования 120 сек, причем относительная погрешность среднеквадратического отклонения

,

если:

а) случайное воздействие имеет спектральную плотность

;

б) если случайное воздействие X(t) является белым шумом.

Моделирование выполняется с целью вычисления количества ординат случайного процесса y(t), которые выходят за уровень


2 Построение численной модели дифференциальной стохастической системы.

Выполним математическое моделирование непрерывно-стохастической системы.

Будем использовать нелинейное стохастическое уравнение 2-го порядка

, (1)

где

- случайный процесс.

Для реализации математической модели в случаях:

а) случайное воздействие имеет спектральную плотность

, (2)

где

- круговая частота;

- коэффициент затухания корреляционной функции;

- средняя частота корреляционной функции.

а) если случайный процесс имеет спектральную плотность.

Белый шум - стационарный случайный процесс с нулевым математическим ожиданием и корреляционной функцией, равной дельта-функции.

Моделирование белого шума осуществляется по следующей формуле:

, (3)

где

-независимая случайная величина с нормальным законом распределения с mx=0 и Dx=1,

No - коэффициент интенсивности белого шума или высота спектральной плотности.

Моделирование случайного воздействия со спектральной плотностью

осуществляется стохастическим дифференциальным уравнением второго порядка

; (4)

в систему уравнений 1-ого порядка, для этого введем специальные переменные:

(5)

В результате получим следующую систему 1-го порядка:

(6)

Применяем к каждому уравнению метод Эйлера

(7)

получим следующую численную модель:

(8)

В случае а) когда случайное воздействие – белый шум, аналогично, математическая модель будет иметь вид:

(9)

При моделировании непрерывной стохастической модели следует выполнить такие действия:

1) Подбор коэффициента интенсивности белого шума (его мы осуществим с помощью табуляции функции

,

ее максимальное значение и будет требуемым шагом);

2) разработать датчик случайных чисел с нормальным законом распределения.


Для этого необходимо:

- сгенерировать два случайных числа с равномерным законом распределения, 1-ое число

, а второе число

(Рисунок 1);

- сравнить, если V1>f(V1), то все числа отбрасываются и генерация повторяется заново, иначе меньшее число принимается как верное;

3) выбрать произвольный шаг табулирования;

4) получить значения по системам уравнений (8),(9);

5) проверить сходимость - проверка выполняется среднеквадратично по формуле

, (10)

Если погрешность среднеквадратичного отклонения менее или равна 0.05, то полученные значения считаются решением, иначе необходимо уменьшить шаг в 2 раза и повторить итерацию.

Причем в случае, где X(t)- белый шум обеспечиваем сходимость только по x1 (8); а в случае, где случайное воздействие имеет спектральную плотность (2), сходимость обеспечиваем и по x1 и по x3.


3 Результаты моделирования

На основе выбранной численной модели была разработана программа по моделирования системы.

Алгоритм работы программы следующий:

- находится коэффициент интенсивности белого шума No, для этого функция

табулируется , в диапазоне (1;120) с шагом 0,1

Первая часть задачи, где m(t) белый шум:

- применяется генератор случайных чисел с нормальным распределением;

- выбирается произвольный шаг;

- получаются зависимости y(t) от t и y’(t);

- выполняется контроль среднеквадратического отклонения

по формуле

,

-если среднеквадратического отклонения менее, либо равно 0.05 то полученные зависимости считаются решением, иначе шаг табулирования уменьшается в два раза.

Решение второй части задачи, где х(t) заданная функция, выполняется по выше описанному алгоритму лишь с той разницей, что контроль среднеквадратического отклонения ведется не только по x1, но и по x3. (из формулы (6 ) ). Полученный результат выводится в текстовый файл.

После завершения работы программы были получены необходимые точечные оценки дифференциального стохастического уравнения.

Результаты представлены ниже на рисунках 1-6.

Программа приведена в приложении А.

Результаты работы программ представлены в виде графиков зависимостей.

Случайный процесс является белым шумом:

Рисунок 1- Зависимость y от t

Рисунок 2 - Зависимость y’ от t


Случайное воздействие на систему- заданная функция:

Рисунок 3 – Зависимость y от t

Рисунок 4 – Зависимость z от t


Заключение

Была выполнена работа по моделированию состояния системы непрерывно-стохастической модели на ЭВМ, состояние которой описывается стохастическим дифференциальным уравнением

,