Смекни!
smekni.com

Построение и использование имитационных моделей (стр. 2 из 6)

2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

Таким образом, при моделировании мы генерируем две экспоненциально распределенные псевдослучайные последовательности с заданными средними значениями

,
.

Чтобы смоделировать экспоненциально распределенную случайную величину сначала генерируется стандартно равномерно распределенная случайная величина U, которая затем преобразуется в величину с экспоненциальным законом распределения согласно формуле:

X = –b ln(U),(2.1)

где b - математическое ожидание.

Для генерации стандартно равномерно распределенной случайной величины U используется мультипликативный генератор:

, (2.2)

где: a = 630360016, m = 2147483647.

Рассмотрим вид входных распределений на основе последовательностей из 1000 элементов с входными параметрами генераторов (

– случайная величина поступления требований (среднее значение 10),
– случайная величина обработки требований (среднее значение 10)):

(
) =46382 ,
(
) = 94215.

3. Оценка входных параметров

3.1 Оценки средних значений

Оценка математического ожидания случайных величин X вычисляется по формуле:

(3.1)

где n – количество элементов.

Для случайных величин

и
она равна:

Оценка дисперсии случайных величин вычисляется по формуле:

. (3.2)

Для случайных величин

и
она равна:

Оценка корреляции случайных величин вычисляется по формулам:

, (3.3)

где j = 1,…,n.

Графики корреляции показаны на рисунках 3.1. и 3.2.

Рисунок 3.1 – Корреляция величины

Рисунок 3.2 – Корреляция величины S

Графики зависимости последующего значения от предыдущего представлены на рисунках 3.3 и 3.4.

Рисунок 3.3 – Зависимость

от

Рисунок 3.4 – Зависимость

от

3.2 Интервальные оценки

Доверительный интервал для оценки математического ожидания случайной величины определяется формулой:

, (3.4)

где b = 0.95 – доверительная вероятность,

- квантиль порядка
,
=
- оценка дисперсии.
= 1.96 для доверительной вероятности 0.95.

Доверительные интервалы для оценки математического ожидания случайных величин

и
равны:

(9.5886; 10.8315),

– попадает в полученный доверительный интервал;

(9.5627; 10.7928),

– попадает в полученный доверительный интервал.

3.3 Проверка статистических гипотез

Проверка гипотез об экспоненциальном распределении величин A и S осуществляется с помощью метода c2.

Выдвигаем гипотезу о том, что случайные величины A и S распределены экспоненциально.

Статистическая функция вычисляется по формуле:

, (3.5)

где

- это частота попадания в k –й интервал, pi - вероятность попадания, которая вычисляется следующим образом

, (3.6)

Расчет проводился на k = 20. Если

, то гипотеза принимается, если
, гипотеза отвергается. По данным таблицы для k=20 и
=0.05, критерий c2 = 31.4.

В результате были получены следующие значения

и

Таким образом, обе гипотезы принимаются.

Интервалы: [0 0,4879), [0.4879 1.0008), [1.0008 1.5415), [1.5415 2.1131), [2.1131 2.7193), [2.7193 3.3647), [3.3647 4.0547), [4.0547 4.7957), [4.7957 5.5962), [5.5962 6.4663), [6.4663 7.4194), [7.4194 8.4730), [8.4730 9.6508), [9.6508 10.9861), [10.9861 12.5276), [12.5276 14.3508), [14.3508 16.5823), [16.5823 19.4591), [19.4591 23.5138) .

3.4 Метод гистограмм

На рисунках 3.5 и 3.6 изображены гистограммы с функциями плотностей распределения вероятностей для A и S.

Рисунок 3.5 –Гистограмма величины A

Эта гистограмма показывает, что смоделированная случайная величина A распределена по экспоненциальному закону. Математическое ожидание случайной величины А равно 10.

Рисунок 3.6 –Гистограмма величины S

На гистограмме видно, что смоделированная случайная величина S распределена по экспоненциальному закону. Математическое ожидание случайной величины S равно 10.

На рисунках 3.7 и 3.8 изображены графики функций распределения вероятностей для A и S.

Рисунок 3.7 – Функция распределения величины A

Рисунок 3.8 – Функция распределения величины S


4 Логика работы программы

4.1 Блок-схема алгоритма программы

На рисунке 4.1 представлена логика работы системы массового обслуживания с дисциплиной – циклическая с квантом q.


Нет


Да