2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.
3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).
Таким образом, при моделировании мы генерируем две экспоненциально распределенные псевдослучайные последовательности с заданными средними значениями
Чтобы смоделировать экспоненциально распределенную случайную величину сначала генерируется стандартно равномерно распределенная случайная величина U, которая затем преобразуется в величину с экспоненциальным законом распределения согласно формуле:
X = –b ln(U),(2.1)
где b - математическое ожидание.
Для генерации стандартно равномерно распределенной случайной величины U используется мультипликативный генератор:
где: a = 630360016, m = 2147483647.
Рассмотрим вид входных распределений на основе последовательностей из 1000 элементов с входными параметрами генераторов (
3. Оценка входных параметров
3.1 Оценки средних значений
Оценка математического ожидания случайных величин X вычисляется по формуле:
(3.1)
где n – количество элементов.
Для случайных величин
Оценка дисперсии случайных величин вычисляется по формуле:
Для случайных величин
Оценка корреляции случайных величин вычисляется по формулам:
где j = 1,…,n.
Графики корреляции показаны на рисунках 3.1. и 3.2.
Рисунок 3.1 – Корреляция величины
Рисунок 3.2 – Корреляция величины S
Графики зависимости последующего значения от предыдущего представлены на рисунках 3.3 и 3.4.
Рисунок 3.3 – Зависимость
Рисунок 3.4 – Зависимость
3.2 Интервальные оценки
Доверительный интервал для оценки математического ожидания случайной величины определяется формулой:
где b = 0.95 – доверительная вероятность,
Доверительные интервалы для оценки математического ожидания случайных величин
(9.5886; 10.8315),
(9.5627; 10.7928),
3.3 Проверка статистических гипотез
Проверка гипотез об экспоненциальном распределении величин A и S осуществляется с помощью метода c2.
Выдвигаем гипотезу о том, что случайные величины A и S распределены экспоненциально.
Статистическая функция вычисляется по формуле:
где
Расчет проводился на k = 20. Если
В результате были получены следующие значения
Таким образом, обе гипотезы принимаются.
Интервалы: [0 0,4879), [0.4879 1.0008), [1.0008 1.5415), [1.5415 2.1131), [2.1131 2.7193), [2.7193 3.3647), [3.3647 4.0547), [4.0547 4.7957), [4.7957 5.5962), [5.5962 6.4663), [6.4663 7.4194), [7.4194 8.4730), [8.4730 9.6508), [9.6508 10.9861), [10.9861 12.5276), [12.5276 14.3508), [14.3508 16.5823), [16.5823 19.4591), [19.4591 23.5138) .
3.4 Метод гистограмм
На рисунках 3.5 и 3.6 изображены гистограммы с функциями плотностей распределения вероятностей для A и S.
Рисунок 3.5 –Гистограмма величины A
Эта гистограмма показывает, что смоделированная случайная величина A распределена по экспоненциальному закону. Математическое ожидание случайной величины А равно 10.
Рисунок 3.6 –Гистограмма величины S
На гистограмме видно, что смоделированная случайная величина S распределена по экспоненциальному закону. Математическое ожидание случайной величины S равно 10.
На рисунках 3.7 и 3.8 изображены графики функций распределения вероятностей для A и S.
Рисунок 3.7 – Функция распределения величины A
Рисунок 3.8 – Функция распределения величины S
4 Логика работы программы
4.1 Блок-схема алгоритма программы
На рисунке 4.1 представлена логика работы системы массового обслуживания с дисциплиной – циклическая с квантом q.
| ||||
| ||||
|
Нет
|
|
|