Свобода выбора материала обусловливает и возможность достижения повышенных значений фото-ЭДС (например, Uxx=0,8... 1,1 В
у GaAlAs-структур), высокого значения КПД преобразования (до 100%), меньших, чем у кремния, темновых токов и шумов, расширения температурного диапазона, повышения устойчивости к воздействию проникающей радиации.
Важнейшим достоинством гетерофотодиодов является их физическая и технологическая совместимость с устройствами интегральной оптики. Несомненно полезным может оказаться то, что они могут быть изготовлены на одном кристалле с излучателем и микросхемой, т. е. открывается возможность создания универсальных монолитных оптоэлектронных элементов дуплексной связи. Гетерофотодиоды значительно сложнее в изготовлении, чем кремниевые, однако имеющиеся технологические трудности постепенно преодолеваются. Основные материалы гетерофотодиодов - GaAlAs для l~0,85 мкм и InGaAsP, InGaAs для l=1,3... 1,55 мкм. Гетерофотодиоды работают и в режиме лавинного умножения, причем благодаря малой толщине активной области рабочее напряжение может составлять десятки вольт. Препятствием на пути их развития является то обстоятельство, что практически для всех соединений А3В5 коэффициенты размножения
электронов и дырок приблизительно одинаковы (a-da+) это ведет к повышенному уровню шумов. Исключение составляет GaSb, однако этот материал пока все еще характеризуется очень низким качеством. Поэтому широкое развитие лавинных гетерофотодиодов маловероятно, их альтернативой являются интегрированные структуры, в которых на одном кристалле полупроводника A3B5 объединены гетерофотодиод и МДП - транзистор. Быстродействие таких структур может быть менее
0,1 нс при внутреннем усилении около 102.
Создание гетеро-ЛФД представляется возможным благодаря развитию техники сверхрешеток. Анализ показывает, что в сверхрешетке можно доводить отношение a+/a-- до 20 и более.
Фототранзисторы
Фототранзисторы составляют весьма представительный отряд оптоэлектронных фотоприемников, наиболее характерными чертами которого являются наличие механизмов встроенного усиления (отсюда высокая фоточувствительность) и схемотехническая гибкость, обусловленная наличием третьего - управляющего - электрода. В то же время фототранзисторам присуща заметная инерционность, что ограничивает область их примернения в основном устройствами автоматики и управления силовыми цепями. Они изготавливаются практически только на кремнии.
1-- n+-InP-эмиттер с кольцевым электродом;
2-- p-InGaAsP-база;
3-- n+-n-InP-коллектор (подложка).
Гетерофототранзисторы (рис. 8) основаны на принципе действия обычного биполярного фототранзистора, но в них используются и все достоинства гетероструктур: широкозонные эмиттерное и коллекторное окна (что позволяет создавать конструкции с прямой и обратной - через толстый коллекторный слой - засветкой); тонкая фотоактивная базовая область, полностью поглощающая воздействующее излучение; идеальность гетерограниц, препятствующих просачиванию основных носителей базы в коллектор и накоплению их в нем. Все это ведет к тому, что гетерофототранзисторы могут иметь не только высокую чувствительность в любом заданном участке спектра, но и очень высокое быстродействие (в нано- и субнаносекундном диапазоне). Однако гетерофототранзисторы используются, как правило, лишь в диодном включении (так как вывод от узкой базовой области сделать затруднительно), что лишает их схемотехнической гибкости, присущей транзисторам. По мере усовершенствования и промышленного развития эти приборы станут "соперниками" ЛФД, выгодно отличаясь от них низким питающим напряжением, отсутствием жестких требований к стабилизации режима работы и другими достоинствами, присущими транзисторам.
Заключение
Итак, как вы уже успели убедиться, применение гетеропереходов в оптоэлектронике помогает разрешить многие проблемы. Так, в частности, найдено решение задачи создания приборов с прямозонной энергетической диаграммой, что не удавалось реализовать на гомогенных структурах. Прозрачность широкозонного эмиттера для рекомбинационного излучения базы гетерогенной структуры существенно облегчает задачу констуирования излучательных приборов. Также гетероструктуры способствуют всё большей интеграции оптоэлектронных устройств. Реализация сверхрешеток позволит создавать элементную базу с произвольными зонными диаграммами, т.е. гетероструктуры являются перспективным направлением исследования. Технологические трудности изготовления гетеропереходов, как нам кажется, явление временное и в недалеком будущем преодолимое. Применительно к нашей специальности (физика и техника оптической связи) гетероструктуры являются хорошим подспорьем в конструировании систем волоконно-оптической связи. Инжекционные лазеры, например, с их способностью генерировать пучок света, (являющийся переносчиком информации в волоконно-оптических линиях связи) с наперед заданным направлением распространения - решение проблемы миниатюризации основных элементов систем волоконно-оптической связи.
Конечно, существуют еще много неразрешенных проблем, но, как нам кажется, будущее оптоэлектроники неразрывно связано с гетероструктурами.
Литература:
Панков Ж. "Оптические процессы в полупроводниках"
Носов Ю.Р. "Оптоэлектроника"