Смекни!
smekni.com

Квантовые вычисления (стр. 6 из 6)

a. Пусть система будет в каком-нибудь состоянии S:

В случае С(S) = 1, повернуть фазу на

радиан;

В случае С(S) = 0, оставить систему неизмененной.

b. Применить преобразование диффузии D которое определяется матрицей D следующим образом:

, если
;' и
. D может быть реализована как последовательное выполнение унитарных преобразований:
, где W – матрица преобразований Адамара, R – матрица фазового поворота.

(3) Произвести измерение полученного состоянии. Это состояние будет состоянием С(

)„ (т. е. искомым состоянием, удовлетворяющим условию (C(
) = 1) с вероятностью, по крайней мере, не меньшей, чем 0.5. Заметим, что шаг (2а) — это фазовое вращение. В его реализацию должна быть включена процедура распознания состояния и последующего определения осуществлять или нет поворот фазы. Она должна проводиться таким образом, чтобы не оставлять следа на состоянии системы, так, чтобы была уверенность, что пути, приводящие к тому же самому конечному состоянию, неразличимы и могут интерферировать. Заметим, что эта процедура не включает классического измерения.

Данный квантовый алгоритм поиска, вероятно, будет проще реализовать по сравнению со многими другими известными квантово-механическими алгоритмами, так как необходимые операции — это только преобразование Уолша-Адамара и операция условного сдвига фазы, каждая из которых относительно проста по сравнению с операциями, используемыми другими квантово-механическими алгоритмами.


Заключение

Сейчас квантовые компьютеры и квантовые информационные технологии остаются в состоянии пионерских разработок. Решение трудностей, с которыми сейчас столкнулись эти технологии, обеспечит прорыв квантовых компьютеров к их законному месту самых быстрых вычислительных машин из всех физически возможных. К сегодняшнему дню исправление ошибок существенно продвинулось, приближая момент, когда мы сможем создавать достаточно надежные компьютеры, способные противостоять эффектам декогеренции. С другой стороны, создание квантового оборудования пока остается только возникающей отраслью; но работа, проделанная на сегодня, убеждает нас, что создание достаточно больших машин, способных выполнять серьезные алгоритмы, например, алгоритм Шора, всего лишь дело времени. Таким образом, квантовые компьютеры обязательно появятся. По меньшей мере, это будут самые совершенные вычислительные устройства, а современные нам компьютеры устареют. Квантовые вычисления берут свое начало в весьма специфических областях теоретической физики, но их будущее, несомненно, окажет огромное воздействие на жизнь всего человечества.


Список литературы

1. Квантовые вычисления: за и против. Под ред. В.А. Садовничего. – Ижевск: Издательский дом «Удмуртский университет», 1999. – 212 с.

2. Белонучкин В.E., Заикин Д.А., Ципенюк Ю.М., Основы физики. Курс общей физики: Учебн. В 2 т. Т. 2. Квантовая и статистическая физика. – М.: ФИЗМАТЛИТ, 2001. – 504 с.

3. Валиев К.А. «Квантовые компьютеры: можно ли их сделать «большими»?», Успехи физических наук, т. 169, № 6, 1999г.

4. Валиев К.А. «Квантовая информатика: компьютеры, связь и криптография», ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ НАУК, том 70, № 8, с. 688-695, 2000г.

5. Маслов. Д. «Квантовые вычисления и коммуникация: реальность и перспективы», Компьютерра, №46 , 2004г.

6. Халфин Л.А. «Квантовый эффект Зенона», Успехи физических наук, т. 160, № 10, 1990г.

7. Холево А. «Квантовая информатика: прошлое, настоящее, будущее»,

В МИРЕ НАУКИ, №7, 2008г.

8. Centre for Quantum Technologies, National University of Singapore www.quantumlah.org