В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.
Последний подход, развиваемый с начала 1990-х годов называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.
Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска пути и принятия решений.
Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.
Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.
Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.
Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них — машинное обучение — касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.
К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.
Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам, сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей ее функционирования.
Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы внешней средой, называется агентным подходом.
Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ. Примером интеллектуальной робототехники могут служить игрушки-роботы Pleo, AIBO, QRIO.
Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки,литературных произведений (часто — стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.
Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.
Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы информационной безопасности.
Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.
В настоящий момент в создании искусственного интеллект наблюдается вовлечение многих предметных областей, имеющих хоть какое-то отношение к ИИ. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.
Исследования ИИ влились в общий поток технологий сингулярности (видового скачка, экспоненциального развития человека), таких как информатика, экспертные системы, нанотехнология, молекулярная биоэлектроника, теоретическая биология, квантовая теория.
Некоторые из самых известных ИИ-систем:
- Deep Blue — победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain.
- MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.
- 20Q — проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net.
- Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.
- Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.
Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.
Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие «Игровой искусственный интеллект». Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.
Можно выделить два направления развития ИИ:
1. решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека.
2. создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.