2. Второе требование также выполняется: вероятность подобрать блок данных T', отличный от блока T, но обладающий такой же цифровой подписью, чрезвычайно мала и может не приниматься во внимание. Действительно, пусть цифровая подпись блоков T и T' совпадает. Тогда подписи обоих блоков будут равны соответственно:
s=SnT(T)=(s0,s1)=(RT(K0), R2nT–1–T(K1)),
s'=SnT(T')=(s'0,s'1)=(RT'(K0), R2nT–1–T'(K1)),
s=s', следовательно:
RT(K0)=RT'(K0)& R2nT–1–T(K1)=R2nT–1–T'(K1).
Положим для определенности T£T', тогда справедливо следующее:
RT'–T(K0*)=K0*,RT'–T(K1*)=K1*,где K0*=RT(K0), K1*=R2nT–1–T'(K1)
Последнее условие означает, что прокручивание двух различных блоков данных одно и то же число раз оставляет их значения неизменными. Вероятность такого события чрезвычайно мала и может не приниматься во внимание.
Таким образом рассмотренная модификация схемы Диффи–Хеллмана делает возможным подпись не одного бита, а целой битовой группы. Это позволяет в несколько раз уменьшить размер подписи и ключей подписи/проверки данной схемы. Однако надо понимать, что увеличение размера подписываемых битовых групп приводит к экспоненциальному росту объема необходимых вычислений и начиная с некоторого значения делает работу схемы недопустимо неэффективной. Граница «разумного размера» подписываемой группы находится где-то рядом с восемью битами, и блоки большего размера все равно необходимо подписывать «по частям».
Теперь найдем размеры ключей и подписи, а также объем необходимых для реализации схемы вычислений. Пусть размер хэш–блока и блока используемого шифра одинаковы и равны n, а размер подписываемых битовых групп равен nT. Предположим также, что если последняя группа содержит меньшее число битов, обрабатывается она все равно как полная nT-битовая группа. Тогда размеры ключей подписи/проверки и самой подписи совпадают и равны следующей величине:
бит,где éxù обозначает округление числа x до ближайшего целого в сторону возрастания. Число операций шифрования EK(X), требуемое для реализации процедур схемы, определяются нижеследующими соотношениями:
· при выработке ключевой информации оно равно:
,· при подписи и проверке подписи оно вдвое меньше:
.В следующей ниже таблице 2 приведены рассчитанные значения размеров ключей и подписи, и числа требуемых операций шифрования в зависимости от размера подписываемых битовых групп при условии использования блочного криптоалгоритма с размером блока n=64бита:
Таблица 2. Числовые показатели схемы подписи в зависимости от размера битовых групп.
nT | Число бит. | Размер подписи и ключей, байт | Число операций шифрования | |
групп | |KS|=|KC|=|s| | WK | WS=WC | |
1 | 64 | 1024 | 128 | 64 |
2 | 32 | 512 | 192 | 96 |
3 | 22 | 352 | 308 | 154 |
4 | 16 | 256 | 480 | 240 |
5 | 13 | 208 | 806 | 403 |
6 | 11 | 176 | 1386 | 693 |
7 | 10 | 160 | 2540 | 1270 |
8 | 8 | 128 | 4080 | 2040 |
9 | 8 | 128 | 8176 | 4088 |
10 | 7 | 112 | 14322 | 7161 |
11 | 6 | 96 | 24564 | 12282 |
12 | 6 | 96 | 49140 | 24570 |
13 | 5 | 80 | 81910 | 40955 |
14 | 5 | 80 | 163830 | 81915 |
15 | 5 | 80 | 327670 | 163835 |
16 | 4 | 64 | 524280 | 262140 |
Размер ключа подписи и проверки подписи можно дополнительно уменьшить следующими приемами:
1. Нет необходимости хранить ключи подписи отдельных битовых групп, их можно динамически вырабатывать в нужный момент времени с помощью генератора криптостойкой гаммы. Ключом подписи в этом случае будет являться обычный ключ использованного в схеме подписи блочного шифра. Для ГОСТа 28147–89 этот размер равен 256 битам, поэтому если схема подписи будет построена на ГОСТе, размер ключа подписи будет равен тем же 256 битам.
2. Точно так же, нет необходимости хранить массив ключей проверки подписи отдельных битовых групп блока, достаточно хранить его хэш-комбинацию. При этом алгоритм выработки ключа подписи и алгоритм проверки подписи будут дополнены еще одним шагом – вычислением хэш-кода для массива проверочных комбинаций отдельных битовых групп.
Таким образом, проблема размера ключей и подписи полностью решена, однако, главный недостаток схемы – одноразовость ключей – не преодолен, поскольку это невозможно в рамках подхода Диффи–Хеллмана. Для практического использования такой схемы, рассчитанной на подпись N сообщений, отправителю необходимо хранить N ключей подписи, а получателю – N ключей проверки, что достаточно неудобно. Однако эта проблема может быть решена в точности так же, как была решена проблема ключей для множественных битовых групп – генерацией ключей подписи для всех Nсообщений из одного мастер-ключа и свертывание всех проверочных комбинаций в одну контрольную комбинацию с помощью алгоритма выработки хэш-кода. Такой подход решил бы проблему размера хранимых ключей, однако привел бы к необходимости вместе подписью каждого сообщения высылать недостающие N–1 проверочных комбинаций, необходимых для вычисления хэш-кода от массива всех контрольных комбинаций отдельных сообщений. Ясно, что такой вариант не обладает преимуществами по сравнению с исходным. Однако в [7] был предложен механизм, позволяющий значительно снизить остроту проблемы. Его основная идея – вычислять контрольную комбинацию (ключ проверки подписи) не как хэш от линейного массива проверочных комбинаций всех сообщений, а попарно – с помощью бинарного дерева. На каждом уровне проверочная комбинация вычисляется как хэш от двух проверочных комбинаций младшего уровня. Чем выше уровень комбинации, тем больше отдельных ключей проверки в ней «учтено». Предположим, что наша схема рассчитана на 2Lсообщений. Обозначим через Ci(l)i-тую комбинацию l-того уровня. Если нумерацию комбинаций и уровней начинать с нуля, то справедливо следующее условие: 0£i<2L–l, а i-тая проверочная комбинация l-того уровня рассчитана на 2l сообщений с номерами от i×2lдо (i+1)×2l–1 включительно. Число комбинаций нижнего, нулевого уровня равно 2L, а самого верхнего, L-того уровня – одна, она и является контрольной комбинацией всех 2L сообщений, на которые рассчитана схема. На каждом уровне, начиная с первого, проверочные комбинации рассчитываются по следующей формуле:
Ci(l+1)=H(C2(il)||C2(il)+1),
где через A||Bобозначен результат конкатенации двух блоков данных – Aи B, а через H(X) – процедура вычисления хэш-кода блока данныхX.
При использовании указанного подхода вместе с подписью сообщения необходимо передать не N–1, как в исходном варианте, а только log2N контрольных комбинаций. Передаваться должны комбинации, соответствующие смежным ветвям дерева на пути от конечной вершины, соответствующей номеру использованной подписи, к корню.
Схема попарного хеширования проверочных комбинаций при выработке общего ключа проверки подписи на восемь сообщений приведена на рисунке 3. Так, в схеме на 8 сообщений при передаче сообщения №5 (контрольная комбинация выделена рамкой) вместе с его подписью должны быть переданы контрольная комбинация сообщения №4 (C4(0)), общая для сообщений №№6–7 (C3(1)) и общая для сообщений №№0–3 (C0(2)), все они выделены на рисунке другим фоном. При проверке подписи значение C5(0) будет вычислено из сообщения и его подписи, а итоговая контрольная комбинация, подлежащая сравнению с эталонной, по следующей формуле:C=C0(3)=H(C0(2)||H(H(C4(0)||C5(0))||C3(1))).
Номера контрольных комбинаций каждого уровня, которые должны быть переданы вместе с подписью сообщения с номером i (0£i<2L), вычисляются по следующей формуле: Cë(il/)2lûÅ1, l=0,...,L–1, где xÅ1 означает число, получающееся в результате инвертирования младшего бита в числе x.
Необходимость отправлять вместе с подписью сообщения дополнительную информацию, нужную для проверки подписи, на самом деле не очень обременительна. Действительно, в системе на 1024=210 подписей вместе с сообщением и его подписью необходимо дополнительно передавать 10 контрольных комбинаций, а в системе на 1048576=220 подписей – всего 20 комбинаций. Однако при большом числе подписей, на которые рассчитана система, возникает другая проблема – хранение дополнительных комбинаций, если они рассчитаны предварительно, или их выработка в момент формирования подписи.