Смекни!
smekni.com

Технология решения задач линейного программирования с помощью Поиска решений приложения Excel (стр. 1 из 5)

Нижегородский Государственный Технический Университет

Павловский филиал

Курсовая работа

по информатике на тему:

“Технология решения задач линейного программирования с помощью Поиска решений приложения Excel”.

Выполнила: Бородулина Д.А.

Группа 05-АМ.

Проверила: Ловыгина М.Б.

Павлово 2006 г.

Содержание

Введение……………………………………………………………………………стр.3

Решение задач с помощью надстройки Поиск решения

  1. Установка программы Поиск решения…………………………………………..…стр.4
  2. Диалоговое окно Поиск решения…………………………………………………..…стр.4
  3. Ввод и редактирование ограничений………………………………………………..стр.5
  4. Настройка параметров алгоритма и программы……………………………….стр.6

Сохранение и загрузка модели

  1. Сохранение модели оптимизации…………………………………………………....стр.9
  2. Загрузка модели оптимизации……………………………………………………….стр.9

Вычисления и результаты решения задачи………………………………..стр.10

Просмотр промежуточных результатов поиска решения…………...стр.11

Возникающие проблемы и сообщения процедуры поиска решения…...стр.12

Итоговые сообщения процедуры поиска решения……………………....стр.13

Примеры выполнения задач

  1. Пример № 1………………………………………………………………………………стр.15
  2. Пример № 2 (графическим способом)……………………………………………...стр..20

Вывод……………………………………………………………………………....стр.24

Список литературы…………………………………………………………....стр.25

Введение

Линейная оптимизация – это раздел математического программирования, посвящённый нахождению экстремума линейных функций нескольких переменных при дополнительных линейных ограничениях, которые налагаются на переменные. Методы, с помощью которых решаются задачи, подразделяются на универсальные (например, симплексный метод) и специальные. С помощью универсальных методов решаются любые задачи линейного программирования. Особенностью задач линейного программирования является то, что экстремум целевой функции достигается на границе области допустимых решений.

Использование электронных таблиц широко распространено для решения многочисленных и разнообразных задач, связанных с учётом и контролем результатов управленческой деятельности: торгово-закупочных операций, производственных планов, бухучёта и т. п. Вместе с тем форма электронной таблицы оказывается очень удобной при решении многих аналитических задач управления деятельностью, и в частности задач исследования операций и поиска оптимальных решений.

В экономике оптимизационные задачи возникают в связи с многочисленностью возможных вариантов функционирования конкретного экономического объекта, когда возникает ситуация выбора варианта, наилучшего по некоторому правилу, критерию, характеризуемому соответствующей целевой функцией (например, иметь минимум затрат, максимум продукции).

Такие задачи в Excel решают с помощью Поиска решения.

Процедура Поиск решения представляет собой мощный инструмент для выполнения сложных вычислений. Она позволяет находить значения переменных, удовлетворяющих указанным критериям оптимальности, при условии выполнения заданных ограничений.

Решение задач с помощью надстройки Поиск решения

1. Установка программы Поиск решения

В меню Сервис выберите команду Надстройки.

В диалоговом окне Надстройки установите флажок Поиск решения. Если диалоговое окно Надстройки не содержит команды Поиск решения, нажмите кнопку Обзор и укажите диск и папку, в которой содержится файл надстройки Solver.xla (как правило, это папка Library\Solver folder) или запустите программу Setup, если найти файл не удаётся.

Надстройка, указанная в диалоговом окне Надстройки, остаётся активной до тех пор, пока она не будет удалена.

2. Диалоговое окно Поиск решения

Окно Поиск решения (рис. 1) вызывается командой меню Сервис>Поиск решения.

Поле Установить целевую ячейку служит для указания целевой ячейки, значение которой необходимо максимизировать, минимизировать или установить равным заданному числу. Эта ячейка должна содержать формулу.

Рис.1.Диалоговое окно Поиск решения.

Кнопка Равной служит для выбора варианта с заданным значением целевой ячейки. Чтобы установить заданное число, введите его в поле.

Поле Изменяя ячейки служит для указания ячеек, значения которых изменяются в процессе поиска решения до тех пор, пока не будут выполнены наложенные ограничения и условие оптимизации значения ячейки, указанной в поле Установить целевую ячейку.

В поле Изменяя ячейки вводятся имена или адреса изменяемых ячеек, разделяя их запятыми. Изменяемые ячейки должны быть прямо или косвенно связаны с целевой ячейкой. Допускается установка до 200 изменяемых ячеек.

Поле Предположить используется для автоматического поиска ячеек, влияющих на формулу, ссылка на которую дана в поле Установить целевую ячейку. Результат поиска отображается в поле Изменяя ячейки.

Поля Ограничения служат для отображения списка граничных условий, налагаемые на переменные задачи. Допускаются ограничения в виде равенств, неравенств, а также – требование целочисленности переменных. Ограничения добавляются по одному с помощью кнопки Добавить.

Команда Изменить служит для отображения диалогового окна Изменение ограничения.

Команда Удалить служит для снятия указанного курсором ограничения.

Команда Выполнить служит для запуска поиска решения поставленной задачи.

Команда Закрыть служит для выхода из окна диалога без запуска поиска решения поставленной задачи. При этом сохраняются установки, сделанные в окнах диалога, появлявшихся после нажатий на кнопки Параметры, Добавить, Изменить или Удалить.

Кнопка Параметры служит для отображения диалогового окна Параметры поиска решения, в котором можно загрузить или сохранить оптимизируемую модель и указать предусмотренные варианты поиска решения.

Кнопка Восстановить служит для очистки полей окна диалога и восстановления значений параметров поиска решения, используемых по умолчанию.

3.Ввод и редактирование ограничений

Диалоговые окна изменения и добавления ограничений одинаковы, рис.2.

В поле Ссылка на ячейку вводится адрес или имя ячейки или диапазона, на значения которых накладываются ограничения.

Выберите из раскрывающегося списка условный оператор, который необходимо разместить между ссылкой и её ограничением. Это знаки операторов: не более, не менее, равно и т. д.

В поле Ограничения введите число, формулу или имя ячейки или диапазона содержащих или вычисляющих ограничивающие значения.

Чтобы приступить к набору нового условия, нажмите кнопку Добавить.

Чтобы вернуться в диалоговое окно Поиск решения, нажмите кнопку ОК.

Условные операторы целого и двоичного типа можно применять только при наложении ограничений на изменяемые ячейки.

Рис.2.Диалоговое окно Изменение ограничения.

4. Настройка параметров алгоритма и программы

Настройка параметров алгоритма и программы производится в диалоговом окне Параметры поиска решения, рис. 3.

В окне устанавливаются ограничения на время решения задач, выбираются алгоритмы, задаётся точность решения, предоставляется возможность для сохранения вариантов модели и их последующей загрузки. Значения и состояния элементов управления, используемые по умолчанию, подходят для решения большинства задач.

Рис. 3. Диалоговое окно Параметры поиска решения.

Поле Максимальное время служит для ограничения времени, отпускаемого на поиск решения задачи. В поле можно ввести время (в секундах) не превышающее 32767; значение 100, используемое по умолчанию, подходит для решения большинства лабораторных работ.

Поле Предельное число итераций служит для управления временем решения задачи, путём ограничения числа промежуточных вычислений. В поле можно ввести время (в секундах) не превышающее 32767; значение 100, используемое по умолчанию, подходит для решения большинства простых задач.

При достижении отведённого временного интервала или при выполнении отведённого числа итераций, на экране появляется диалоговое окно Текущее состояние поиска решения.

Поле Относительная погрешность служит для задания точности (допустимой погрешности), с которой определяется соответствие ячейки целевому значению или приближение к указанным границам. Поле должно содержать число из интервала от 0 (нуля) до1. Низкая точность соответствует введённому числу, содержащему меньшее количество десятичных знаков, чем число, используемое по умолчанию, например, 0,0001. Высокая точность увеличит время, которое требуется для того, чтобы сошёлся процесс оптимизации. Чем меньше введённое число, тем выше точность результатов.

Поле Допустимое отклонение служит для задания допуска на отклонение от оптимального решения, если множество значений влияющей ячейки ограничено множеством целых чисел. При указании большого допуска поиск решения заканчивается быстрее.