Проект, инициализированный в Университете Waterloo (Канады) пытается улучшать эту технологию, и в теории и в практике с целью принятия модуля логарифмов штрих p длины более 400 битов. Лучшие оценки состоят в том, что эта цель далека от достижения на несколько лет. Можно сказать, что принятие модуля логарифмов 512-разрядный штрих p останется труднообрабатываемым в течение следующих трех или четырех лет. На сравнении, 512-разрядный RSA модуль будет вероятно разложен на множители в пределах года или около этого.
Тем не менее, для долгой защиты, 1024-разрядный или больший moduli p должен использоваться в дискретных системах шифрования логарифма.
3.3.Эллиптическая кривая дискретная проблема логарифма (ECDLP)
Эллиптический аналог кривой системного агента каталога (ECDSA), и эллиптических аналогов кривой Diffie-Hellman ключевой схемы соглашения, ElGamal кодирования и схем сигнатуры, Schnorr схемы сигнатуры, и Nyberg-Rueppel схемы сигнатуры.
Должно быть подчеркнуто, что эти проблемы являются труднообрабатываемыми, потому что годы интенсивного изучения ведущими математиками и компьютерными учеными не сумели выдать эффективные алгоритмы для их решения .
Если q - главная мощность, то Fq обозначает конечное поле, содержащее q элементы. В приложениях q - обычно мощность 2 (2m) или вспомогательное простое число (p).
Эллиптическая кривая дискретная проблема логарифма (ECDLP) заключается в следующем: учитывая эллиптическую кривую E определенную по Fq, точка PОE (Fq) порядка n, и точки QОE (Fq), определяются целым числом 0, l, 2,..., n - 1, так что Добротность = lP, при условии, что такое целое число существует.
Базируясь на трудности этой проблемы, Нейл Коблиц и Виктор Миллер независимо друг от друга в 1985 предложили использовать группу точек на эллиптической кривой, определенной по конечному полю, для осуществления различных дискретных систем шифрования логарифма. Один такой криптогафический протокол, который стандартизируется аккредитованными организациями стандартов - эллиптический аналог кривой системного агента каталога, называемого ECDSA.
Имеется только два главных способа в методах для решения IFP: квадратичный алгоритм разложения на множители решета (вместе с его предшественником, алгоритм разложения на множители цепной дроби), и решето поля цифр. Последний алгоритм возводит в степень некоторую сложную математику (особенно алгебраическая теория номера), и только полностью понят маленьким семейством теоретиков. До появления компьютеров, математики не искали алгоритмы для IFP, которые были эффективны вручную скорее , чем на больших сетях компьютеров. Другой факт, который обычно пропускается - то многое из работы, сделанной на процессоре передачи данных до 1985, также применяется к ECDLP , так как ECDLP может просматриваться как похожий на процессор передачи данных, но в различной алгебраической установке.
3.3.2. Разложения на множетели
Начиная с 1985, на ECDLP обратили значительное внимание ведущие математики во всем мире. Алгоритм из-за Pohlig и Hellman приводит определениеl к определениюl модуля каждый из главных множителей n. Следовательно, чтобы достичь возможно максимального уровня защиты, n должен быть главным. Лучший алгоритм, известный до настоящего времени для ECDLP - Pollard метод ро, где шаг имеется эллиптическое сложение кривой. В 1993 Р. Oorschot и Майкл Винер показали, как Pollard метод ро может быть параллелизован так, чтобы, если r процессоры использовались, то ожидаемое число с каждым процессором перед одиночным дискретным логарифмом получено - ( ) /r. Наиболее существенно, алгоритмы " типа показателя степени " не являются известными из-за ECDLP ,что касается процессора передачи данных. По этой причине, ECDLP является намного тяжелее или чем IFP или процессор передачи данных .
В 1991 Menezes, Okamoto и Vanstone (MOV) показал, как ECDLP может быть сокращен к процессу перпдачи данных в полях Fq, где могут применяться методы конкремента индекса. Однако, этот MOV алгоритм приведения эффективен только для очень специальной категории кривых ,известных как суперсингулярные кривые. Имеется простое испытание, чтобы гарантировать, что эллиптическая кривая не уязвима к этому разложению. Суперсингулярные кривые специально запрещены во всех стандартах эллиптических систем кривой типа ИИЭРА P1363, ANSI X9.62, и ANSI X9.63.
Другой жидкий класс эллиптических кривых - так называемые аномальные кривые - кривые E определенные по Fq, которые имеют точно q точки. Разложение на этих кривых было обнаружено Semaev, Smart, и Satoh и Araki , и обобщено Rьck. Имеется простое испытание над суперсингулярными кривыми для того чтобы гарантировать, что эллиптическая кривая не уязвима; через это испытание, эти кривые специально запрещены во всех стандартах эллиптических систем кривой.
3.3.3. Программные разложения фунции на множетели
Криптографический алгоритм RSA использует только один тип вычислений – возведение в степень . Показатель степени определяет длительность выполнения процедуры вычеслений. Чтобы обеспечить требуемый уровень надежности , показатель степени, являющийся секретным ключом , должен быть достаточно большим , поэтому для вычислений требуется много времени.
Производительность вычислительных устройств с недавнего времени принято оценивать в MIPS ( Million Instruction Per Second): 1MIPS=10^6 опер./с.
MIPS года – такая сложность алгоритма, которая требует годовой работы компьютера чтобы его вскрыть.
По отношению к эллиптическим кривым производительность 1 MIPS соответствует примерно 4*10^4 операций сложения кривой в секунду, поскольку длина ключа существенно превышает длину еденицы данных. У стойчивость алгоритмов криптографии принято оценивать в MIPS годах . Иначе говоря , устойчивость – это число лет непрерывной работы , необходимое вычислителю с производительностью 1 MIPS ,чтобы взломать данный шифр.
Время на взлом MIPS лет | Размер ключа RSA/DSA | Размер ключа ЕСС | Отношение длин ключей RSA/DSA |
10^4 | 512 | 106 | 5:1 |
10^8 | 768 | 132 | 6:1 |
10^11 | 1.024 | 160 | 7:1 |
10^20 | 2.048 | 210 | 10:1 |
10^78 | 21 | 600 | 35:1 |
Таблица 3.1. Сравнение размеров ключей , необходимых для обеспечения эквивалентных уровней безопасности.
Программные выполнение на SPARC IPC исполняют 2,000 эллиптических сложений кривой в секунду. Тогда число эллиптических сложений кривой, которые могут быть выполнены 1 механизмом MIPS в одном году:
(4 x 104) • (60 x 60 x 24 x 365) " 240.
Например, если 10,000 компьютеров каждый в 1,000 MIPS году доступн, то эллиптическая кривая дискретного логарифма может быть вычислена через 96,000 лет.
3.3.4 Выбор основного поля Fq и эллиптической кривой E
При установке режимов эллиптической системы шифрования кривой, имеются три основных пункта, которые должны быть сделаны:
1. Выбор основного конечного поля Fq.
2. Выбор представления для элементов Fq.
3. Выбор эллиптической кривой E по Fq.
1. Два наиболее общего выбора в практических приложениях для основного конечного поля - F2m и Fp (где p - вспомогательный штрих). ECDLP одинаково труден для образцов, которые используют F2m и для образцов , которые используют Fp, и где размеры 2m и p полей приблизительно равны. Не имелось никаких математических открытий до настоящего времени, которые показывают, что ECDLP для эллиптических кривых по F2m может быть проще или тяжелее чем ECDLP для эллиптических кривых по Fp.
2. Если поле F2m выбрано как основное конечное поле, то имеются много путей, в которых элементы F2m могут быть представлены. Два наиболее эффективных пути : оптимальное , нормальное представление основания и полиномиальное представление основания. Так как элементы в одном представлении могут быть эффективно преобразованы к элементам в другом представлении, используя соответствующую матрицу изменения основания, на ECDLP не воздействует выбор представления.
4. MOV алгоритм приведения выдает алгоритм для ECDLP, когда эллиптическая кривая суперсингулярна. В большенстве случаев эллиптические кривые являются не-суперсингулярными. Кроме того, можно легко проверить действительно ли MOV алгоритм приведения выполним для данной эллиптической кривой – следовательно, этого разъедания легко избегают на практике. Также, можно легко обнаружить является ли данная кривая аномальной. Разъедания на аномальной кривой легко избегают. При выборе не-суперсингулярной эллиптической кривой, можно выбирать кривую наугад, или можно выбирать кривую специальными свойствами, которые могут привести быстрее к эллиптической арифметике кривой. Пример специальной категории кривых, который был предложен - кривые Koblitz . ECDLP одинаково труден для образцов, которые используют беспорядочно сгенерированные кривые, и для тех, которые используют кривые Koblitz. Не имелось никаких математических открытий до настоящего времени, которые показывают, что ECDLP для беспорядочно сгенерированных эллиптических кривых - проще или тяжелее чем ECDLP для кривых Koblitz.
3.3.5.Стандарты кода с исправлением ошибок
Международная стандартизация систем засекречивания протоколов - важный процесс, который активно поддержан фирмой Certicom. Стандартизация имеет три главных выгоды. Сначала, это учитывает способность к взаимодействию среди аппаратных и программных систем от многих различных продавцов. Во вторых, это возводит в степень критический обзор защиты систем с криптографической точки зрения. Наконец, это разрешает вход в конструкцию систем шифрования от тех, кто должны осуществить их в широких пределах среды. Эллиптические Кривые - это тема интенсивного исследования в математическом семействе много лет и теперь тщательно исследовались в организациях стандартов в течение более чем трех лет. Это дало инженерам - конструкторам высокий доверительный коэффициент в их защите, которая не могла быть достигнута через поддержку только несколько организаций.