Смекни!
smekni.com

Криптография (стр. 5 из 8)

Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

1. Разложение больших чисел ан простые множители.

2. Вычисление логарифма в конечном поле.

3. Вычисление корней алгебраических уравнений.

Здесь же сле­ду­ет от­ме­тить, что ал­го­рит­мы криптосистемы с открытым ключом (СОК) мож­но ис­поль­зо­вать в трех на­зна­че­ни­ях.

1. Как са­мо­стоя­тель­ные сред­ст­ва за­щи­ты пе­ре­да­вае­мых и хра­ни­мых дан­ных.

2. Как сред­ст­ва для рас­пре­де­ле­ния клю­чей. Ал­го­рит­мы СОК бо­лее тру­до­ем­ки, чем тра­ди­ци­он­ные крип­то­си­сте­мы. По­это­му час­то на прак­ти­ке ра­цио­наль­но с по­мо­щью СОК рас­пре­де­лять клю­чи, объ­ем ко­то­рых как ин­фор­ма­ции не­зна­чи­те­лен. А по­том с по­мо­щью обыч­ных ал­го­рит­мов осу­ще­ст­в­лять об­мен боль­ши­ми ин­фор­ма­ци­он­ны­ми по­то­ка­ми.

3. Сред­ст­ва ау­тен­ти­фи­ка­ции поль­зо­ва­те­лей. Об этом бу­дет рас­ска­за­но в главе «Электронная подпись».

Ниже рассматриваются наиболее распространенные системы с открытым ключом.

Не­смот­ря на до­воль­но боль­шое чис­ло раз­лич­ных СОК, наиболее популярна - криптосистема RSA, разработанная в 1977 году и по­лу­чив­шая на­зва­ние в честь ее соз­да­те­лей: Рона Ри­ве­ста[4], Ади Ша­ми­ра и Леонарда Эй­дель­ма­на.

Они вос­поль­зо­ва­лись тем фак­том, что на­хо­ж­де­ние боль­ших про­стых чи­сел в вы­чис­ли­тель­ном от­но­ше­нии осу­ще­ст­в­ля­ет­ся лег­ко, но раз­ло­же­ние на мно­жи­те­ли про­из­ве­де­ния двух та­ких чи­сел прак­ти­че­ски не­вы­пол­ни­мо. До­ка­за­но (тео­ре­ма Ра­би­на), что рас­кры­тие шиф­ра RSA эк­ви­ва­лент­но та­ко­му раз­ло­же­нию. По­это­му для лю­бой дли­ны клю­ча мож­но дать ниж­нюю оцен­ку чис­ла опе­ра­ций для рас­кры­тия шиф­ра, а с уче­том про­из­во­ди­тель­но­сти со­вре­мен­ных ком­пь­ю­те­ров оце­нить и не­об­хо­ди­мое на это вре­мя.

Воз­мож­ность га­ран­ти­ро­ван­но оце­нить за­щи­щен­ность ал­го­рит­ма RSA ста­ла од­ной из при­чин по­пу­ляр­но­сти этой СОК на фо­не де­сят­ков дру­гих схем. По­это­му ал­го­ритм RSA ис­поль­зу­ет­ся в бан­ков­ских ком­пь­ю­тер­ных се­тях, осо­бен­но для ра­бо­ты с уда­лен­ны­ми кли­ен­та­ми (об­слу­жи­ва­ние кре­дит­ных кар­то­чек).

В настоящее время алгоритм RSA используется во многих стандартах, среди которых SSL, S-HHTP, S-MIME, S/WAN, STT и PCT.

2.2. Типы криптографических услуг

Сегодня безопасные решения используют некоторую комбинацию из пяти различных криптографических услуг. Эти услуги:

Проверка пользователя – введением пути в оперативную транзакцию, пользователь подтверждает, что это именно он.

Идентификация Начала координат Данных - обеспечение источника сообщения.

Целостность Данных - обеспечение сохранения данных неправомочными сторонами.

Не отказ - получатель транзакции способен демонстрировать нейтральному третьему лицу, что требуемый передатчик действительно посылал транзакцию.

Существуют два главных типа криптографии симметрично - ключевые и шифрование с открытым ключом, которые основаны на комплексных математических алгоритмах и управляются ключами. Симметрично - ключевые схемы криптографии требуют две стороны, которые хотят войти в доверие, чтобы разделить общий, секретный ключ. Каждый пользователь должен доверять другому, чтобы не обнародовать общий ключ третьему лицу. Эти системы эффективно зашифруют большое колличество данных ; однако, они излагают существенные ключевые проблемы управления в сетях больше чем в маленьком числе пользователей, и обычно используются вместе с шифрованием с открытым ключом.

В системах шифрования отправитель сообщения шифрует его открытым ключом получателя. Получатель расшифровывает это сообщение своим личным (секретным) ключом. Имея открытый ключ получателя, каждый момент послать ему сообщение ,а прочитать его может только обладатель личного ключа. При этом получить личный ключ из открытого с помощью каких-либо математических операций невозможно.

В системах цифровой лодписи подпись ''накладывается'' с использованием секретного ключа , а снимается с помощью открытого отправителя .

Схемы Шифрования с открытым ключом требуют, чтобы каждая сторона имела ключевую пару: секретный ключ, который не должен быть раскрыт другому пользователю, и общий ключ, который может быть доступным в общем каталоге. Эти два ключа связаны жесткой односторонней функцией, так что в вычислительном отношении неосуществимо определить секретный ключ от общего ключа. Секретный ключ часто сохраняется в программном обеспечении с использованием пароля; однако, секретный ключ должен идеально быть сохранен в безопасной аппаратной лексеме, которая предотвращает прямой доступ или вмешательство.

Криптосистемы с ключом общего пользования решают ключевые проблемы управления, связанные с симметрично - ключевым кодированием; однако, шифрование с открытым ключом предлагает способность эффективно осуществить цифровые представления.

2.3. Цифровые представления

Цифровые представления – это электронный эквивалент традиционных рукописных сигнатур. Рукописные сигнатуры обеспечивают службу безопасности, потому что уникальность почерка личностей делает сигнатуры интенсивными.

В отличие от почерка индивидуума, электронная информация проста для дублирования. Если электронные сигнатуры использовались таким же образом как письменные сигнатуры, защита легко может бытьпоставлена под угрозу.

Цифровые представления могут использоваться, чтобы использовать три криптогафических услуги: идентификацию, неотказ, и целостность данных. код с исправлением ошибок может использоваться, чтобы генерировать сильные цифровые представления с маленьким количеством обработки энергии.

2.4. Эллиптическая криптография кривой.

После изобретения шифрования с открытым ключом, были предложены многочисленные общее - ключевые системызасекречивания на ее основе.Криптография с открытым ключом может применяться как для шифрования сообщений , так и для аутентификации (так называемая цифровая подпись).

Каждая из этих систем полагается на трудную математическую проблему для ее защиты. Ониявляются труднообрабатываемыми, потому что годы интенсивного изучения ведущими математиками и компьютерными учеными не сумели создать эффективные алгоритмы для их решения,так, чтобы практически, они остались труднообрабатываемыми с текущей вычислительной технологией. Требуется время , чтобы получить безопасный ключ с лучшим известным алгоритмом для этой проблемы.Обще - ключевая система шифрования, основана на этой проблеме. Эллиптические кривые - математические конструкции, которые изучились математиками начиная с семнадцатого столетия. В 1985 Нейл Коблиц и Виктор Миллер независимо предложили криптосистемы с ключом общего пользования, использующие группу точек на эллиптической кривой, и эллиптическая криптография кривой (код с исправлением ошибок) была рождена. Начиная с того времени, многочисленные исследователи и разработчики потратилинесколько лет, исследуя силу кода с исправлением ошибок и улучшая методы для его выполнения. Сегодня более быстрая криптосистема с ключом общего пользования предлагает практическую и безопасную технологию для наиболее сдерживаемой среды.

Код с исправлением ошибок дает самую высокую силу в любой известной криптосистемы с ключом общего пользования из-за трудности жесткой проблемы, на которой это основано. Эта большая трудность жесткой проблемы эллиптической кривой, дискретной проблемы логарифма (ECDLP) означает что меньший размер ключа выдаетэквивалентные уровни защиты. Учитывая лучшие известные алгоритмы к целым числам множителя и вычисляют эллиптические логарифмы кривой, размеры ключа являются эквивалентной силой, основанной на MIPS годах, необходимых, чтобы восстановить один ключ.

Трудность проблемы и заканчивающихся размеров ключа эквивалентной силы предоставляет несколько прямых выгод к выполнению электроной платы.

2.5.Электронные платы и код с исправлением ошибок

Электроные платы –это маленькие, переносные, устройства противодействия вмешательству, обеспечивающие пользователей с хранением памятьюи возможностью обработки. Из-за их уникальнойформы, электроные платы предложены для использования в широком разнообразии приложений типа электронной торговли, идентификации, и здравоохранения. Для многих из этих предложенных приложений, требовались бы

криптогафические услуги, предлагаемые цифровыми представлениями. Чтобы быть практическим для широкого применения электроные платы также должны быть недорогими.

Электроная плата поддается криптогафическому выполнению по нескольким причинам. Плата содержит много особенностей защиты, которые допускают защиту чувствительных криптогафических данных и обеспечивают безопасную среду обработки. Защита секретного ключа критическая; чтобы обеспечивать криптогафические услуги, этот ключ никогда не должен быть показан. Электроная плата защищает секретный ключ, и многие рассматривают ее как идеальную криптогафическую лексему.

Осуществление шифрования с открытым ключом в электроном применении платы излагает многочисленные проблемы. Электроные платы представляют комбинацию связей выполнения, которые другие платформы не делают: сдерживаемая память и ограниченные вычислительные возможности.

Как упомянуто ранее, секретный ключ в общее - ключевой паре должен сохраниться секретным. Для истинного неотказа, секретный ключ должен быть полностью недоступен всем другим сторонам. В приложениях, использующих другие типы используемых в настоящее время криптосистем с ключом общего пользования, платы индивидуализированы в безопасной среде, чтобы выполнить это требование. Из-за сложности требуемого вычисления, плата, неэффективена и обычно непрактичена.