Смекни!
smekni.com

Моделирование системы заданной конфигурации (стр. 7 из 7)

Исследование свойств модели

Значения параметров модели обеспечивают ее работу в стационарном режиме, то есть без нарастающих очередей. Значения коэффициентов загрузки обслуживающих узлов, устройств, памятей различны и лежат в пределах 0,4-0,7 Длительность моделирования достаточна для обработки 100000 заявок. Оценка зависимости точности моделирования от его длительности.

В качестве шага изменения длительности моделирования будем использовать число обработанных заявок (10000 - 100000 заявок).

Соответственно выполняется моделирование с разной длительностью (например обрабатывается 5000, 10000, 15000, 20000 заявок). Фиксируем значения 1 узловой и 1 системной характеристик. Строим графики зависимости их значений от числа обработанных заявок.


Таблица 5.2 - Зависимости значений характеристик от числа обработанных заявок

Количество транзактов Длина очереди к устройству b4 Среднее времени пребывания в системе
10000 3,487 450,885
20000 3,502 452,128
50000 3,496 450,636
100000 3,493 450.001

Рисунок 5.1 - Зависимость длины очереди к устройству b5 от числа обработанных заявок

Рисунок 5.2 - Зависимость среднего времени пребывания в системе от числа обработанных заявок

Как видно из графиков зависимостей, с увеличением числа обработанных заявок характеристики системы улучшаются.


6. ИССЛЕДОВАНИЕ СВОЙСТВ СИСТЕМЫ

Анализ исходного состояния системы

Анализ характеристик, полученных для исходных данных, показывает:

1) система работает в установившемся стационарном режиме, т.к. коэффициенты загрузки всех обслуживающих узлов меньше 1 (ρ1 = 0,615; ρ2 = 0,599; ρ3 = 0,432, ρ5 =0.639, ρ6 =0.109);

2) узел 6 не догружен;

3) система разбалансирована, т.к. коэффициенты загрузки обслуживающих узлов значительно отличаются (идеальная балансировка, когда ρ1 2 34= ρ56);

4) потенциальное “узкое” место – узел 1.

Т.е. при росте числа обслуживаемых заявок (их интенсивностей) именно узел 1 первым достигнет загрузки близкой к полной (с коэффициентом загрузки близким к единице). И именно это станет ограничивающим фактором в работе системы.

Сеть будет перегружена, т.е. перейдет из устойчивого стационарного режима работы в режим насыщения. В системе возникнет тенденция к бесконечному нарастанию числа потерянных (не обслуженных) заявок с течением времени моделирования;

5) Вышесказанное означает, что система работает не эффективно и требует настройки, модификации.

Прогнозирование характеристик системы при росте интенсивностей потоков заявок

Проанализировав схему исследуемой системы легко можно сделать вывод, что узел b1 является самым загруженным узлом, а узел b6 не догружен. Поэтому проведем исследование системных характеристик в зависимости от интенсивности поступления заявок в системе. Оставив неизменными интенсивности поступления сохранением заданного соотношения интенсивностей отдельных потоков.

Фиксируем значения 1 узловой и 1системной характеристик. Строим график зависимости их значений от значений интенсивностей потока заявок.

Таблица 6.1 - Зависимости значений характеристик от интенсивности потока заявок

mT(0) Коэффициент загрузки узла b1 Среднее времени пребывания в системе
240 0.616 450.885
180 0.795 472.119
120 0.930 474.820
60 0.974 350.432

Строим графики зависимости их значений от числа обработанных заявок.

Рисунок 6.2 - Зависимость коэффициента загрузки узла b1 от интенсивности поступления заявок

Рисунок 6.3 - Зависимость среднего времени пребывания в системе от интенсивности поступления заявок

При увеличении интенсивности поступления заявок загрузка узла b1 приближается к критической (ρ1=0,974), а при уменьшении интенсивности поступления заявок загрузка узла b1 очень уменьшается (ρ1=0,616). Наилучшими являются интенсивности, заданные в системе и близкие к ним (например λ1 =275 и λ2=183,3).


ЗАКЛЮЧЕНИЕ

В ходе данного курсового проекта была разработана система расчета характеристик разомкнутых экспоненциальных сетевых моделей. Данная система выполняет имитационное моделирование заданной сетевой модели.

Для проверки правильности работы программы были построены модели на языке GPSS и аналитическая модель, выполняющие роль эталона, т.е. характеристики, полученные на этих моделях считаются характеристиками реального объекта. В результате оценки характеристик рассчитанных программой было выяснено, что погрешность при расчетах находится в допустимых пределах.


ЛИТЕРАТУРА

1. Советов Б.Я., С.А. Яковлев. Моделирование систем. - М.: Высшая школа, 2001.

2. Основы теории вычислительных систем под ред. Майорова. – М.: Высшая школа, 1985.

3. Советов Б.Я., С.А. Яковлев. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1988.

4. Муравьев Г.Л. Моделирование систем: Курс лекций по дисциплине “Моделирование систем” для студентов специальностей “АСОИ”, “ЭВМиС”. – Брест: БГТУ, 2003.