Министерство образования Республики Беларусь
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное учреждение высшего профессионального образования
БЕЛОРУССКО–РОССИЙСКИЙ УНИВЕРСИТЕТ
Кафедра «Автоматизированные системы управления»
Курсовая работа на тему:
«Исследование алгоритма SSA-метода при анализе временных последовательностей данных с шумом по известному закону распределения»
по дисциплине
«Математическая логика и теория алгоритмов»
051.23 02 01.081446.23.81-01
2010
Задание на курсовую работу по дисциплине «Математическая логика и теория алгоритмов»
1 Тема работы: Исследование алгоритма SSA-метода при анализе временных последовательностей данных с шумом по известному закону распределения.
2 Срок сдачи студентом законченной работы ‑ 25.05.2010 г.
3 Исходные данные для работы: 1) Технология исследования SSA-метода с использованием пакетов MS Excel, Mathcad, Statistica. 2) Алгоритм генерации временной последовательности данных по заданному закону распределения:
Pearson Type V | Rayleigh |
Постановка задачи. Исследовать свойства SSA-метода при декомпозиции временной последовательности данных на трендовую, гармоническую и шумовую составляющие. Оценить погрешность SSA-метода при декомпозиции временной последовательности данных для разных значений тренда, гармоники и шума. Восстановление шумовой составляющей оценить по критериям хи-квадрат Пирсона, лямбда Колмогорова, омега-квадрат Мизеса.
4 Содержание расчётно-пояснительной записки.
Титульный лист.
Задание на курсовую работу. Аннотация.
Содержание. Перечень условных обозначений. Введение. 1 Анализ и теоретическое исследование алгоритма. 2 Разработка технологии экспериментального исследования алгоритма. 3 Описание разработанного программного обеспечения. 4 Экспериментальное исследование алгоритма. Заключение. Список использованных источников. Приложение.
5. Дата выдачи задания 22.02.2010 г.
6. Научный консультант: канд. техн. наук, доц. Альховик С. А.
7. Календарный график работы на весь период проектирования.
Оглавление
Введение
1. Распределение Pearson Type V
1.1 Формализованное описание закона Pearson Type V
1.2 Примеры использования закона распределения Pearson Type V
1.3 Числовые характеристики закона распределения Pearson Type V
1.4 Получение выборки с распределением Pearson Type V
1.5 Формулировка гипотезы о законе распределения Pearson Type V
1.6 Проверка гипотезы о законе распределения Pearson Type V
1.7 Программа для проверки гипотезы о законе распределения
2. Распределение Rayleigh
2.1 Формализованное описание закона Rayleigh
2.2 Примеры использования закона распределения Rayleigh
2.3 Числовые характеристики закона распределения Rayleigh
2.4 Получение выборки с распределением Rayleigh
2.5 Формулировка гипотезы о законе распределения Rayleigh
2.6 Проверка гипотезы о законе распределения Rayleigh
2.7 Программа для проверки гипотезы о законе распределения
3. SSA-метод
3.1 Определение собственных чисел матрицы
3.2 Содержательное описание SSA-метода
3.3 Методика исследования SSA-метода на основе информационных технологий
4. Исследование временных рядов с шумом заданным Pearson Type V
4.1 Постановка эксперимента
4.2 Экспериментальная часть (тренд)
4.3 Экспериментальная часть (гармонический ряд)
4.4 Экспериментальная часть (рандом)
4.5 Результаты и их обсуждение
5. Исследование временных рядов с шумом заданным Rayleigh
5.1 Постановка эксперимента
5.2 Экспериментальная часть (тренд)
5.3 Экспериментальная часть (гармонический ряд)
5.4 Экспериментальная часть (рандом)
5.5 Результаты и их обсуждение
6. Экспериментальное исследование средней трудоемкости Pirson Type V
7. Экспериментальное исследование средней трудоемкости Rayleigh
Заключение
Список использованных источников
В процессе интеллектуального анализа данных (ИАД) центральное место занимает автоматическое порождение характеризующих анализируемые данные моделей, правил и/или функциональных зависимостей. В целом процесс извлечения знаний в ИАД условно делят на следующие этапы, которые в совокупности предложено использовать на этапе эксплуатации имитационной модели (ИМ) сложного объекта.
Шаг 1. Отбор данных: анализ задач пользователя, выбор целевого множества данных, определение переменных.
Шаг 2. Предобработка данных: устранение зашумленности, обработка пропущенных значений, итоговые показатели по группам данных.
Шаг 3. Редукция и проекция данных: ищутся полезные особенности данных для решения поставленных задач, сокращается пространство переменных.
Шаг 4. Поиск закономерностей: выбор метода поиска закономерностей с учетом объема и типа данных, их зашумленности и осуществление поиска закономерностей.
Шаг 5: Оценка и интерпретация найденных закономерностей: оценка и упорядочение закономерностей по их релевантности, проверка согласованности предыдущих и вновь найденных знаний. Возможно возвращение к любому шагу от 1 до 4 для дальнейших итераций.
Шаг 6. Использование найденных знаний: прямое использование, передача заинтересованным лицам, включение в интеллектуальные системы, основанные на знаниях.
Для разработки технологии извлечения знаний из временных последовательностей данных исследован сингулярный спектральный метод (SSA-метод), включающий этапы вложения, сингулярного разложения, группировки, диагонального усреднения. Исследуем Pearson Type V и Rayleigh законы распределения.
1. Распределение Pearson Type V
1.1 Формализованное описание закона Pearson Type V распределения случайной величины
Плотность вероятности
если x>0;
в противном случае
Функция распределения
если x>0;
где
функция распределения случайной величины с распределением gamma( ,1/ )График функции плотностей распределения вероятностей PT5(α,1) представлен на рисунке 1.1.
Рисунок 1.1. Функции плотностей распределения вероятностей PT5(α,1)
1.2 Примеры использования закона распределения Pearson Type V
Варианты применения: Время выполнения какой-либо задачи (График функции плотности принимает форму, подобную форме графика плотности логнормального распределения, но может иметь большой острый “выступ” ближе к х=0)
1.3 Числовые характеристики закона распределения Pearson Type V
Параметр формы α > 0, масштабный параметр β > 0
Область[0,∞)
Среднее
для α > 1Дисперсия
для α > 2Мода
Оценка максимального правдоподобия
При наличии данных Х1, Х2, …, Хn подборка распределения gamma(
, ) к 1/Х1, 1/Х2, …, 1/Хn, в результате дает оценки по методу максимального правдоподобия и . Оценки максимального правдоподобия для PT5(α,β) составляют = и =Примечания1. Тогда и только тогда X~ PT5(α,β), когда Y=1/X~gamma(
,1/ ). Поэтому распределение Пирсона типа V называют обращенным гамма - распределением.2. Заметьте, среднее и дисперсия существуют только для определенных значений параметров формы.
1.4 Получение выборки с распределением Pearson Type V
Текст программы на C++
//kursml.cpp : main project file.
#include "stdafx.h"
#include "Pearson5.h"
using namespace System;
using namespace Variates;
using namespace System::IO;
int main(array<System::String ^> ^args)
{
TextWriter ^tr = File::CreateText(L"numbers.txt");
for(int i=0;i<100;i++)
{
tr->WriteLine((Pearson5::Sample(1,1).ToString());
}
tr->Close();
return 0;
}
Pearson5.h
#pragma once
#include "Rng.h"
#include "Gamma.h"
using namespace System;
namespace Variates
{
public ref class Pearson5 : public Rng
{
private:
double m_alpha;
double m_beta;
public:
Pearson5(double alpha, double beta) : m_alpha(alpha), m_beta(beta)
{}
virtual double Sample() override
{
return Sample(m_alpha, m_beta);
}
static double Sample(double alpha, double beta)
{
return 1 / Gamma::Sample(alpha, 1 / beta);
}
//FG(x) функция распределения случайной велечины с распределением GAMMA(gamma,1/beta)
virtual double DistributionFunction(double x) override
{return Pearson5::DistributionFunction(x, m_alpha, m_beta);}