Трудоёмкость алгоритма генерации случайного числа зависит от
, ,где
-параметр формы (α > 0), - масштабный параметр (β > 0).Рисунок 6.1 - График зависимости средней трудоёмкости от α (при β=1) для алгоритма генерации случайного числа по закону Pirson Type V
7. Экспериментальное исследование средней трудоемкости алгоритма для генерации случайных чисел по закону Rayleigh
Трудоёмкость алгоритма генерации случайного числа зависит от a,
где a – параметр масштаба (а>0)
Рисунок 7.1 - Графики зависимости трудоёмкости от a и выборки
Рисунок 7.2 - График зависимости средней трудоёмкости от a для алгоритма генерации случайного числа по закону Rayleigh
Заключение
Факты, обнаруженные при исследовании.
1)Гармоническая составляющая по закону распределения Rayleigh восстанавливается со средним значением, близким к нулю. Например, для ряда F(x)0 среднее значение восстановленной составляющей равно -0.00823, а для исходной составляющей 0.038. (см. рисунок 6.1)
Рисунок 6.1. - Среднее значение восстановленной и исходной составляющей
2)Составляющая шума по закону распределения Rayleigh восстанавливается со средним значением, близким к нулю. Для ряда F(x)0 среднее значение восстановленной составляющей равно -0,0605, а для исходной составляющей 1,29.
3)Постоянная составляющая шума исключается при восстановлении и суммируется с линейной составляющей исходного ряда.
4)Значения восстановленных случайных чисел принадлежат исходному интервалу (с учетом исключения постоянной составляющей) с небольшой погрешностью. Например, для ряда F(x)0 исходные случайные числа принадлежат интервалу (0,01; 3,14), восстановленные случайные числа принадлежат интервалу (– 1,1; 1,6).
Методика применения полученных результатов состоит в построении имитационной модели объекта в соответствии с технологиями, представленными выше.
Список использованных источников
1. Айвазян, С. А. Прикладная статистика. Основы моделирования и первичная обработка данных : справоч. изд. / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. – М.: Финансы и статистика, 1983. – 471 с.
2. Крамер, Г. Математические методы статистики : пер. с англ. / Г. Крамер. – 2-е изд. – М.: Мир, 1975. – 648 с.
5. Муха, В. С. Статистические методы обработки данных : учеб. пособие / В. С. Муха. – Минск: Изд. центр БГУ, 2009. – 183 с.
6. Hyndman, R. J. The problem with Sturges’ rule for constructing histograms [Электрон. ресурс] / R. J. Hyndman. – 1995. – Режим доступа : http: // www.robjhyndman.com / papers / sturges.pdf. – Дата доступа : 12.04.2010.
7. Таран, Т. А. Искусственный интеллект. Теория и приложения : учеб. пособие / Т. А. Таран, Д. А. Зубов. – Луганск: ВНУ им. В. Даля, 2006. – 240 с.: ил.
8. Якимов, Е. А. Интеллектуальный анализ входных данных при эксплуатации имитационной модели / Е. А. Якимов; науч. рук.: И. В. Максимей // Новые материалы, оборудование и технологии в промышленности : материалы междунар. науч.-техн. конф. молод. ученых, Могилев, 19-20 ноября 2009 г. – Могилев: Белорус.-Рос. ун-т, 2009. – С. 121.
9. Голяндина, Н.Э. Метод «Гусеница»-SSA: анализ временных рядов: Учебное пособие / Н.Э. Голяндина. – СПб.: С.-Петерб. гос. ун-т, 2004. – 76 с.
10. Голуб, Дж. Матричные вычисления: пер. с англ. / Дж. Голуб, Ч. Ван Лоун. – М.: Наука, 1999. – 548 с.: ил.
11. Гантмахер, Ф.Р. Теория матриц / Ф.Р. Гантмахер; 2-е изд., доп. – М.: Наука, 1966. – 576 с.: ил.
12. Ивановский, Р.И. Компьютерные технологии в науке и образовании. Практика применения систем MathCAD Pro: учеб. пособие / Р.И. Ивановский. – М.: Высш. шк., 2003. – 431 с.: ил.
13. Якимов, Е.А. Исследование SSA-метода на основе комплексного применения информационных технологий / Е. А. Якимов // Доклады БГУИР. – 2010. – № 2(48). – С. 77–83.
14. Якимов, Е.А. Исследование детерминированных временных последовательностей данных на основе SSA-метода / Е. А. Якимов, И. В. Максимей // Информационные технологии, энергетика и экономика (информационные технологии, математическое моделирование технологических процессов, электроника): сб. трудов 7-ой Межрег. (межд.) науч.-техн. конф. студентов и аспирантов, 8–9 апр. 2010 г. : в 3 т. – Смоленск: ф-л ГОУ ВПО МЭИ(ТУ), 2010. – Т. 2. – С. 103–107.