Смекни!
smekni.com

Интеллектуальные информационные системы 3 (стр. 6 из 10)

Пример разработки экспертной системы гарантирования (страхования) коммерческих займов CLUES (loan-uderwriting expert systems) [ 21 ] представлен в таблице 2.3. Эта система создавалась в интегрированной среде ART группой разработчиков в составе одного менеджера проекта, двух инженеров по знаниям, двух программистов, ответственных за сопряжение ЭС с существующей информационной системой и аналитическим инструментом, одного контролера качества. Сложность созданной системы: 1000 правил, 180 функций, 120 объектов. Эффективность: при оценке 8500 кредитов в месяц годовая экономия на обработке информации составляет 0,91 млн. долл., при 30000 кредитов - 2,7 млн. долл. При этом в 50% случаев система принимает самостоятельные решения, в остальных случаях дает экспертам диагностику возникающих проблем. Время оценки кредита сократилось с 50 минут до 10-15 минут. Перечисленные показатели эффективности позволили компании Contrywide расширить сферу своей деятельности во всех штатах США и увеличить оборот с 1 млрд. долл. в месяц в 1991 году до 5 млрд. долл. в 1993 году.

2.2. Идентификация проблемной области

Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.

Начало работ по созданию экспертной системы инициируют руководители компаний (предприятий, учреждений). Обычно необходимость разработки экспертной системы в той или иной сфере деятельности связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Эти затруднения могут быть обусловлены недостаточным опытом работы в данной области, сложностью постоянного привлечения экспертов, нехваткой трудовых ресурсов для решения простых интеллектуальных задач, необходимостью интеграции разнообразных источников знаний. Как правило, назначение экспертной системы связано с одной из следующих областей:

· обучение и консультация неопытных пользователей;

· распространение и использование уникального опыта экспертов;

· автоматизация работы экспертов по принятию решений ;

· оптимизация решения проблем, выдвижение и проверка гипотез.

Таблица 2.3.

Период времени Этап
Ноябрь 1991г. Постановка проблемы
Январь 1992г. Создание отдела ЭС
Февраль - апрель 1992г. Интервьюирование экспертов
Апрель - май 1992г. Моделирование и создание первого прототипа
Май - июнь 1992г. Кодирование (реализация)
Июнь - сентябрь 1992г. Внутреннее тестирование. Системная интеграция
Сентябрь - декабрь 1992г. Альфа-тестирование на известных примерах
Декабрь - январь 1993г. Бета-тестирование на реальных примерах
Февраль 1993г. Внедрение в отрасли розничной торговли (20% кредитов)
Май 1993г. Внедрение в потребительский сектор (10% кредитов)
Август 1993г. Внедрение в отрасли оптовой торговли (35% кредитов)
Февраль 1994г. Внедрение в корреспондентскую сеть (35% кредитов)

Сфера применения экспертной системы характеризует тот круг задач, который подлежит формализации, например, "оценка финансового состояния предприятия", "выбор поставщика продукции", "формирование маркетинговой стратегии" и т.д. Обычно сложность решаемых в экспертной системе проблем должна соответствовать трудоемкости работы эксперта в течение нескольких часов. Более сложные задачи имеет смысл разбивать на совокупности взаимосвязанных задач, которые подлежат разработке в рамках нескольких экспертных систем.

Ограничивающими факторами на разработку экспертной системы выступают отводимые сроки, финансовые ресурсы и программно-техническая среда. От этих ограничений зависит количественный и качественный состав групп инженеров по знаниям и экспертов, глубина прорабатываемых вопросов, адекватность и эффективность решения проблем. Обычно различают три стратегии разработки экспертных систем (таблица 2.4) [18, 20]:

· широкий набор задач, каждая из которых ориентирована на узкую проблемную область;

· концентрированный набор задач, определяющий основные направления повышения эффективности функционирования экономического объекта;

· комплексный набор задач, определяющий организацию всей деятельности экономического объекта.

После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:

· класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);

· критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);

· критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);

· цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);

· подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);

· исходные данные (совокупность используемых факторов);

· особенности используемых знаний (детерминированность/ неопределенность, статичность/динамичность, одноцелевая/ многоцелевая направленность, единственность/множественность источников знаний).

Стратегии разработки экспертных систем

Таблица 2.4.

Широкий набор задач Концентрированный набор задач Комплексныйнабор задач
Назначение Автоматизация Стандартизация,повышение качества Реорганизациябизнес-процессов
Требования к разработчикам Эксперты-пользователи Профессиональные команды Междисциплинарные команды
Стоимость Низкая на проект Высокая на проект Высокая на проект
Риск Диверсифицированный Концентрированный Концентрированный
Примеры DuPont du NemoursОболочка Insight PlusСотни экспертных систем. Сотни правил в каждой ЭС DEC, ЭС конфигурирования компьютеров XCON, продажи XSEL17000 правил, эффект 27 млн. долл. XeroxСреда разработки информационной системыART-Enterprise (Inferenсe)Интеллект. моделированиеReThink (Gensym)

2.3. Построение концептуальной модели

На этапе построения концептуальной модели создается целостное и системное описание используемых знаний, отражающее сущность функционирования проблемной области. От качества построения концептуальной модели проблемной области во многом зависит насколько часто в дальнейшем по мере развития проекта будет выполняться перепроектирование базы знаний. Хорошая концептуальная модель может только уточняться (детализироваться или упрощаться), но не перестраиваться.

Результат концептуализации проблемной области обычно фиксируется в виде наглядных графических схем на объектном, функциональном и поведенческом уровнях моделирования:

· объектная модель описывает структуру предметной области как совокупности взаимосвязанных объектов;

· функциональная модель отражает действия и преобразования над объектами;

· поведенческая модель рассматривает взаимодействия объектов во временном аспекте.

Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а следовательно, и ориентированные на них методы представления знаний. Рассмотрим каждую из представленных видов моделей.

Объектная модель отражает фактуальное знание о составе объектов, их свойств и связей. Элементарной единицей структурного знания является факт, описывающий одно свойство или одну связь объекта, который представляется в виде триплета:

предикат (Объект, Значение).

Если предикат определяет название свойства объекта, то в качестве значения выступает конкретное значение этого свойства, например:

профессия ("Иванов", "Инженер").

Если предикат определяет название связи объекта, то значению соответствует объект, с которым связан первый объект, например:

Работает ("Иванов", "Механический цех" ).