Кафедра
информатики и вычислительной информатики
Дисциплина «ИНФОРМАТИКА»
ОТЧЕТ
по курсовой работе
Тема: «Решение прикладных задач методом дихотомии »
Москва 2009 г.
ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Вариант № 11.
Часть 1
Использование численных методов решения нелинейных уравнений, используемых в прикладных задачах.
Для выполнения 1 части необходимо:
· Составить программу и рассчитать значение функции в левой части нелинейного уравнения для решения задачи отделения корней;
· Составить логическую схему алгоритма, таблицу идентификаторов и программу нахождения корня уравнения методом дихотомии и методом Ньютона;
· Ввести программу в компьютер ,отладить, решить задачу с точностью ε=0.0001 и вывести результат;
· Предусмотреть в программе вывод на экран дисплея процесса получения корня.
Уравнение:
, [1,2];Метод численного решения: метод дихотомии,метод хорд.
Решение.
Метод дихотомии
1. Этот метод позволяет отыскать корень уравнения f(
)=0 с любой наперед заданной точностью ε.Предполагается,что искомый корень уравнения уже отделен,т.е. указан отрезок [ a ; b ] непрерывности функции f(x) такой,что на концах этого отрезка функция принимает различные значения.
Суть метода в том, что [ a ;b ] делится пополам.Половина, где нет корня отбрасывается, а другая делиться на два.
1-й Шаг.Вычисление середины отрезка
Еслиf(
)=0, то мы нашли точный корень уравнения.Еслиf(
) · f(x0)<0, то находится в интервале [ ] следовательно ;Иначе
2-й Шаг.Вычисление середины отрезка
Еслиf(
)=0, то мы нашли точный корень уравнения.Еслиf(
· f(x1)<0 , то ;Иначе
n-ый Шаг.Вычисление середины отрезка
Еслиf(
)=0, то мы нашли точный корень уравнения.Еслиf(
·f(xn)<0 , то ;Иначе
Условием нахождения корня является:
2. Нелинейное уравнение и условие его решения:
, [1,2], ε = 0,0001;3. График функции:
4. Схема алгоритма:
5. Таблица идентификаторов:
Обозначение | Идентификатор | Тип |
n | n | int |
a | double | |
b | double | |
eps | double | |
x | x | double |
f(x) | f(x) | double |
6. Листингпрограммы:
#include<stdio.h>
#include<math.h>
double f(double x)
{
return 0.25*(pow(x,3))+x-1.2502;
}
int main(void)
{
int n=0;
double x,a=0.,b=2.,eps=0.0001;
while (fabs(a-b)>2*eps)
{
x=(a+b)/2,
n++;
printf("step=%3i x=%11.8lf f(x)=%11.8lf\n",n,x,f(x));
if (f(x)==0)
{
printf("Tothnii koreni x=%lf\nkolithestvo iteratsii n=%i\n",x,n);
return 0;
}
else if (f(a)*f(x)<0) b=x;
else a=x;
}
printf("Reshenie x=%11.8lf pri Eps=%lf\nkolithestvo iteratsii n=%i\n",x,eps,n);
return 0;
}
7. Листинг решения:
step= 1x= 1.50000000f(x)=-0.21392288
step= 2x= 1.25000000f(x)=-0.00893133
step= 3x= 1.12500000f(x)= 0.08982692
step= 4x= 1.18750000f(x)= 0.04080796
step= 5x= 1.21875000f(x)= 0.01602415
step= 6x= 1.23437500f(x)= 0.00356738
step= 7x= 1.24218750f(x)=-0.00267680
step= 8x= 1.23828125f(x)= 0.00044659
step= 9x= 1.24023438f(x)=-0.00111478
step= 10 x= 1.23925781f(x)=-0.00033401
step= 11 x= 1.23876953f(x)= 0.00005631
step= 12 x= 1.23901367f(x)=-0.00013885
step= 13 x= 1.23889160f(x)=-0.00004127
Reshenie x= 1.23889160 pri Eps=0.0001
kolithestvo iteratsii n=13
Метод хорд:
1. Этот метод заключается в том, что к графику функции проводится хорда. Находим точку пересечения с осью OX и опускаем из этой точки прямую параллельную OY. Из точки пе-ресечения прямой и графика проводим хорду и операция повторяется до тех пор, пока точка пересечения хорды с осью OX не приблизиться к корню функции до заданной погрешности.
Шаг первый:
Нас интересует точка пересечения с осью ОХ.
Сделаем допущение: х=x1
y=0
Введем обозначение
x0f(
)=f(x0)Подставим в уравнение
Отсюда
x1=x0-
Шаг второй:
x2=x1-
Для n-го шага:
xn=xn-1-
Условием нахождения корня является:
2. Нелинейное уравнение и условие его решения:
, [1,2], ε = 0,0001;3. График функции:
Таблица идетификаторов:
Обозначение | Идентификатор | Тип |
n | n | int |
a | double | |
b | double | |
eps | double | |
x | x | double |
f(x) | f(x) | double |
6. Листингпрограммы:
#include<stdio.h>
#include<math.h>
double f(double x)
{
return (0.25*(pow(x,3)))+x-1.2502;
}
int main(void)
{
int n=0;
double x,a=1.,b=2.,eps=0.0001,xn;
xn=a;
while (fabs(xn-x)>eps)
{
x=xn;
n++;
xn=x-f(x)*(b-x)/(f(b)-f(x));
printf("step=%3i x=%11.8lf f(x)=%11.8lf\n",n,xn,f(xn));
}
printf("pribligennoe znathenie x=%lf pri Eps=%lf\nkolithestvo iterasii n=%i\n",xn,eps,n);
return 0;
}
7. Листинг решения:
step= 1 x= 1.22334934 f(x)= 0.01236182
step= 2 x= 1.23796144 f(x)= 0.00070219
step= 3 x= 1.23879055 f(x)= 0.00003951
step= 4 x= 1.23883720 f(x)= 0.00000222
pribligennoe znathenie x=1.238837 pri Eps=0.0001
kolithestvo iterasii n=4
Анализ результатов:
метод дихотомии | метод хорд | |
значение корня | 1.23889160 | 1.23883720 |
значение функции | -0.00004127 | 0.00000222 |
количество итераций | 13 | 4 |
Вывод: Метод дихотомии прост в реализации, но обладает малой скоростью сходимости по сравнению с методом хорд, что выражается в количестве шагов. Метод хорд к тому же обладает большей точностью.
Часть 2
Решение дифференциального уравнения.
Вариант №11.
Метод Эйлера
1.Математическое описание
Геометрический смысл метода Эйлера состоит в следующем: дифференциальное уравнение определяет в точке (x0,y0) направление касательной к искомой интегральной кривой
k0=y'(x0)=f(x0,y0)
Отрезок интегральной кривой, соответствующий x
(x0,x1), x1=x0+h заменяется участком касательной с угловым коэффициентом k. Найденная точка (x1,y1) используется в качестве нового начального условия для уравнения y(x1)=y1,в ней вновь вычисляется угловой коэффициент поля направлений и процедура повторяется.