Смекни!
smekni.com

Использование нечеткой искусственной нейронной сети TSK Takagi Sugeno Kanga в задаче прогнозирования (стр. 3 из 14)

где

- дельта Кронекера,
;

При практической реализации гибридного метода обучения нечетких сетей доминирующим фактором их адаптации считается первый этап, на котором веса

подбираются с использованием псевдо инверсии за один шаг. Для уравновешивания его влияния второй этап много раз повторяется в каждом цикл.

Представленный гибридный алгоритм – один из наиболее эффективных способов обучения нечетких нейронных сетей. Его характерной чертой является разделение процесса на два отделенных во времени этапа. Если учитывать, что расчетная сложность каждого алгоритма оптимизации нелинейно зависит от количества параметров, которые подлежат оптимизации, то уменьшение размерности задач оптимизации значительно сокращает объем расчетных операций и повышает скорость сходимости алгоритма. Благодаря этому гибридный алгоритм является более эффективным в сравнении с обычным градиентным методом. [3]


Раздел 4. Полученные результаты

4.1 Экспериментальные исследования ННС TSK

Рассматриваются временные ряды валютных курсов российского рубля по отношению к американскому доллару, евро, британскому фунту стерлингов, швейцарскому франку, японской йене. А также рассматриваются временные ряды курсов валютных пар доллара к евро, британскому фунту стерлингов, японской йене. Временные ряды взяты за 2007, 2008 и начало 2009 года – всего 500 измерений. Данные о временных рядах взяты с сайта биржевых торгов Forex и официального сайта центрального банка России.

Количество точек обучающей выборке в эксперименте взято равным 250, количество точек проверочной выборки – 250. На рисунках 2-9 приведены графики курсов валют реальные данные и прогноз на 1 шаг. Видно, что реальные данные от спрогнозированных данных визуально практически неотличимы. На рисунках 10-17 приведены графики курсов валют реальные данные и прогноз на 3 шага. Видно, что реальные данные от спрогнозированных данных уже можно отличить визуально. В приложении 1 приведены численные значения реальных и спрогнозированных значений курсов валют, а также ошибки прогноза.

Каждая валютная пара рассматривается независимо от других валютных пар. Входными данными для прогнозирования значения курса валютной пары являются наблюдения за ежедневными курсами этой валютной пары за предыдущие периоды. Выходом является прогноз курса рассматриваемой валютной пары на следующий период.

Критерием эффективности прогноза было выбрано среднеквадратическое отклонение СКО.

где

– прогноз на
-ый момент времени, сделанный в момент времени
.

Вторым критерием эффективности был САПП.

.

СКО и САПП искались отдельно на обучающей выборке и отдельно на проверочной выборке. Полученные значения СКО и САПП приведены в разделе 4.4., где будет проведена сравнительная характеристика рассматриваемой ИНС и метода экспоненциального сглаживания.

Рисунок 2. График курса валюты доллара США к евро. Зеленый – реальные данные, красный – спрогнозированные


Рисунок 3. График курса валюты доллара США к британскому фунту стерлингов. Зеленый – реальные данные, красный – спрогнозированные

Рисунок 4. График курса валюты доллара США к евро. Зеленый – реальные данные, красный – спрогнозированные


Рисунок 5. График курса валюты российского рубля к доллару США. Зеленый – реальные данные, красный – спрогнозированные

Рисунок 6. График курса валюты российского рубля к евро. Зеленый – реальные данные, красный – спрогнозированные


Рисунок 7. График курса валюты российского рубля к британскому фунту стерлингов. Зеленый – реальные данные, красный – спрогнозированные

Рисунок 8. График курса валюты российского рубля к швейцарскому франку. Зеленый – реальные данные, красный – спрогнозированные


Рисунок 9. График курса валюты российского рубля к доллару японской йене. Зеленый – реальные данные, красный – спрогнозированные

Рисунок 10. График курса валюты доллара США к евро. Зеленый – реальные данные, красный – спрогнозированные на 3 шага


Рисунок 11. График курса валюты доллара США к британскому фунту стерлингов. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

Рисунок 12. График курса валюты доллара США к японской йене. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

Рисунок 13. График курса валюты российского рубля к доллару США. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

Рисунок 14. График курса валюты российского рубля к евро. Зеленый – реальные данные, красный – спрогнозированные на 3 шага


Рисунок 15. График курса валюты российского рубля к британскому фунту стерлингов. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

Рисунок 16. График курса валюты российского рубля к швейцарскому франку. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

Рисунок 17. График курса валюты российского рубля к японской йене. Зеленый – реальные данные, красный – спрогнозированные на 3 шага

4.2 Экспериментальные исследования метода экспоненциально сглаживания

Метод экспоненциально сглаживания (МЭС) является адаптивным алгоритмом прогнозирования. МЭС проявил себя с хорошей стороны во многих экспериментальных исследованиях [1]. Поэтому МЭС был выбран для сравнения потенциальной эффективности ННС TSKв данной курсовой работе.

Экспоненциальное сглаживание ряда

осуществлялось по рекуррентной формуле:

где

– значение экспоненциальной средней в момент
;
– постоянная сглаживания (параметр адаптации),
,
.

При прогнозировании исходная выборка была разбита на 2 части: обучающую и проверочную. Длины обучающей и проверочной выборке в эксперименте с ННС TSK и МЭС были равны. На обучающей выборке была выбрана наилучшая постоянная сглаживания

. Далее она использовалась для прогнозирования на проверочной выборке.

4.3 Экспериментальные исследования нейронной сети с кубическими сплайнами

На рисунке 2 приводится структура нейронной сети, которая была ранее предложена автором курсовой работы. Данная нейронная сеть приводится для сравнения. Выделяются следующие характеристики, свойства, особенности и функциональные элементы сети:

1. Обучение проводится с учителем. Т.е. для каждого входного вектора имеется желаемое для выхода значение.

2. Выборка разбивается на 2 части: обучающая и проверочная.

3. На вход

необходимо подавать сигналы

.
,

где

– память системы.

4. На

входов подаются следующие величины

,

где

– память системы.