Вариант № | Номераканалов | Спектр.окно | Длител.интервала |
7 | 3,4,5 | Чебышева | 128 |
1. Основные теоретические сведения
В любой радиоэлектронной системе приходится иметь дело с обработкой случайных сигналов. Такая обработка проводится с различными целями. Часто задачей этой обработки является оценка различных характеристик, начиная от оценки моментов и заканчивая оценкой корреляционной функции, закона распределения и спектра мощности.
1.1 Оценка моментов
Оценка математического ожидания:
где w(x) –плотность распределения случайной величины.
Для стационарного эргодического процесса:
для дискретного сигнала:
В качестве оценки математического ожидания используют:
Качество оценки определяется степенью её разброса вокруг точного значения. Количественно оценка описывается доверительным интервалом значений вокруг точной величины, в который оценка попадает с заданной вероятностью. Под доверительной вероятностью понимается площадь под кривой внутри границ доверительного интервала. Чем уже интервал, тем лучше оценка. Количественной мерой ширины интервала служит дисперсия оценки:
Оценка называется состоятельной, если с увеличением объема выборки дисперсия оценки стремится к нулю. Оценки могут выполняться по разным правилам и формулам.
Часто используется оценка максимального правдоподобия. Такая оценка основана на рассмотрении совместной плотности вероятности, как функции оцениваемого параметра.
Оценкой максимального правдоподобия называют:
- уравнение правдоподобия. Его решение:
.Пусть
- независимые случайные величины, тогдаФункция правдоподобия:
Для нормального закона распределения:
.Оценкой дисперсии для нормального случайного процесса является:
1.2 Оценивание закона распределения
Существует два класса законов распределения:
· Интегральный
· Дифференциальный
Для оценки сигнала используется дифференциальный закон (плотность распределения).
Известно два способа оценки:
· Непараметрический (когда тип исходного распределения неизвестен)
- Гистограммный
- Парзена
- Разложения на базисные функции
- Полигонов Смирнова
- К-ближайших соседей
· Параметрический (известен закон, надо определить параметры)
Мы имеем дело с априорно непрерывной плотностью распределения вероятности, отличной от нуля на всем рассматриваемом интервале х. Объем выборки должен быть велик.
Наиболее простой и часто используемый метод – метод гистограмм.
Область возможных значений сигнала разбивается на непересекающиеся подобласти, в одномерном случае это интервалы
, в многомерном – параллелепипеды. Затем выборка исходных значений сигнала перебирается и подсчитывается число значений выборки попавших в к-ю подобласть. Затем оценивается закон распределения:Размеры интервалов
делаются одинаковыми. Для выбора количества интервалов и их ширины нет общих правил.Достоинства такой гистограммы:
+ Простота оценивания
+ Ясный физический смысл
Недостатки:
- При увеличении объема выборок, но неизменном количестве интервалов, оценка не сходится к точному значению закона распределения.
Сходимостью этой оценки к точному значению можно обеспечить, если выполняются дополнительные условия. При увеличении N необходимо увеличение числа интервалов и уменьшения их величины. При этом необходимо выполнить следующие условия:
1.
2.
3.
Первое условие обеспечивает сходимость пространственно усредненной величины к точному значению оценки, при этом подобласти должны сокращаться с одинаковой скоростью, а закон распределения должен быть непрерывным.
Второе условие: закон распределения на всем интервале отличен от нуля.
Третье условие обеспечивает сходимость оценки к точному закону распределения.
Существует два способа выполнения этих условий:
1. Сжатие подобласти таким образом, чтобы
был обратно пропорционален корню квадратному из N (метод Парзена).2. Подобласти так сжимаются, чтобы
(метод к-ближайших соседей)В случае обработки цифрового сигнала общий объем является целой степенью 2. Максимальное значение сигнала
, где r-число разрядов используемого кода. Поэтому границы интервалов выбираются так, чтобы они совпадали с уровнями квантования, их количество 8-20.1.3 Корреляционный анализ
Корреляционный анализ наряду со спектральным играет большую роль в теории сигналов. Говоря кратко, его смысл состоит в количественном измерении степени сходства различных сигналов. Для этого служат корреляционные функции.
1.3.1 Корреляционная функция
Корреляционная функция (КФ; английский термин — correlationfunction, CF) детерминированного сигнала с конечной энергией представляет собой интеграл (в бесконечных пределах) от произведения двух копий сигнала, сдвинутых друг относительно друга на время τ:
Корреляционная функция показывает степень сходства между сигналом и его сдвинутой копией — чем больше значение корреляционной функции, тем это сходство сильнее. Кроме того, корреляционная функция обладает следующими свойствами:
1. Значение КФ при
равно энергии сигнала, то есть интегралу от его квадрата: