На первом этапе метода потенциалов вычисляются предварительные потенциалы
удовлетворяющие системе уравнений
для . (3.1)(Здесь
- множество пар индексов векторов, составляющих базис плана .)Переименуем векторы базиса
и обозначим l-й вектор черезУчитывая, что все компоненты вектора
, кроме двух, равных единице, равны нулю, можно переписать систему (3.1) в эквивалентном виде .Здесь
; - стоимость единичной перевозки по коммуникации, соответствующей вектору .Таким образом, предварительные потенциалы составляют вектор оценок условий задачи относительно данного базиса ,который определяется во втором алгоритме метода улучшения плана. Если для любого вектора условий
,То в соответствии с критерием оптимальности метода улучшения плана данный план
- решение задачи. Это же заключение следует из критерия оптимальности, используемого в методе потенциалов.Предположим, что при некоторых i,j
.Тогда в соответствии с методом последовательного улучшения плана выбирается такая пара индексов
, на которой величина(оценка вектора условий
) достигает минимума, и осуществляется переход к новому базису путем замены одного из векторов системы вектором . Та же операция осуществляется и в методе потенциалов (этап 2). Переход к новому базису связан с разложением вводимого вектора (вектора ) по векторам базиса , что эквивалентно решению системы линейных уравнений. Благодаря простой структуре векторов решение этой системы существенно облегчается по сравнению с общим случаем.Согласно методу улучшения плана после разложения вводимого вектора (вектора
) по векторам старого базиса разыскивается величина . (3.2)Здесь
- коэффициент при i-м векторе базиса в разложении вектора ограничений (вводимого вектора) по векторам старого базиса; минимум берется по тем индексам i, для которых . Если , то из базиса удаляется его r-й вектор.Базисные компоненты нового плана определяются по формуле
(3.3)Для транспортной задачи коэффициенты
равны нулю или . При этом в том и только в том случае, если i-й вектор базиса соответствует коммуникации, которая занимает нечетную (четную) позицию в построенном маршруте. Поэтому формула (3.2) в случае транспортной задачи может быть заменена правилом: - минимальная нечетная перевозка маршрута, связывающего пункты и . Это правило и используется в методе потенциалов. Формула (3.3) применительно к транспортной задаче превращается в правило изменения плана перевозок, употребляемое в методе потенциалов: перевозки, запланированные по нечетным (четным) коммуникациям, уменьшаются (увеличиваются) на величину , перевозка между и полагается равной , остальные перевозки сохраняют свои значения.Итак, метод потенциалов является детализацией второго алгоритма метода улучшения плана, учитывающей специфику транспортной задачи. Отличие состоит только в том, что на каждом шаге метода потенциалов все параметры задачи (план, предварительные потенциалы, коэффициенты разложения вводимого вектора коммуникаций) вычисляются не по рекуррентным формулам, как в методе улучшения плана, а непосредственно. Это оказывается более выгодным из-за простоты условий задачи T, позволяющей легко решать соответствующие системы линейных уравнений.
4. Алгоритм метода потенциалов
Алгоритм метода потенциалов складывается из предварительного этапа и конечного числа однотипных итераций. На предварительном этапе строится исходный опорный план
задачи T и составляется матрица ,где
и - предварительные потенциалы, отвечающие исходному плану .На каждой итерации рассматриваются и преобразуются две матрицы
и .Матрица
представляет собой опорный план задачи T, построенный в результате k-й итерации. Матрица составлена из оценок векторов относительно базиса плана , т.е.где
и - предварительные потенциалы, отвечающие плану .Вначале будем предполагать задачу T невырожденной. Необходимые замечания относительно вырожденного случая будут сделаны ниже.
Предварительный этап. С помощью метода северо-западного угла или метода минимального элемента определяется исходный опорный план
исследуемой задачи T. Далее, согласно правилам, изложенным при описании 1-го этапа метода потенциалов, вычисляем величины , , , и составляем матрицу .Если все элементы
неотрицательны, то - решение задачи T. В противном случае переходим ко второму этапу, описание которго приводится ниже. Процесс вычисления предварительных потенциалов формализуется следующим образом. Пусть - номера тех столбцов матрицы С, которые содержат -существенные элементы в 1-й строке; - номера строк матрицы С, которые содержат -существенные элементы в столбцах с номерами . Если множества и для уже определены, то объединяет номера тех столбцов матрицы С, не принадлежащих , которые содержат -существенные элементы в строках с номерами , а состоит из номеров строк этой матрицы, не включенных в и содержащих -существенные элементы в столбцах с номерами . Образование множеств и производится до тех пор, пока процесс не прерывается получением пустого множества. Если , то под будем понимать такой элемент множества , что - -существенный элемент С. Аналогично, для определим как элемент , при котором является -существенным элементом С. Из опорности плана следует, что множества , равно как и множества , не пересекаются. Невырожденность плана приводит к тому, что объединение всех множеств есть , а объединение всех множеств составляет .