Смекни!
smekni.com

Разработка web-сайта (стр. 8 из 14)


N = R·Dk.

По современным оценкам среднегодовая смертность от профессиональных причин, включая несчастные случаи на производствах, не превышает 104 случаев в год.

Для реализации главной цепи радиационной защиты достижения и сохранения необходимых условий радиационной безопасности при всех видах деятельности, где предполагается облучение человека, - вводятся основные дозовые пределы. Используя их, рассчитываются производственные характеристики, такие, как предельно допустимые уровни внешних потоков ионизирующих изучений и допустимые концентрации радионуклидов в воде и воздухе.

Материалы, располагаемые между источником излучения и зоной размещения персонала или оборудования для ослабления потоков ионизирующих излучений, называют защитой.

Защиту от ионизирующих излучений классифицируют по:

- назначению;

- типу;

- компоновке;

- геометрии.

Защита от ионизирующих изучений должна обеспечивать:

а) допустимый уровень облучения обслуживающего установку персонала;

б) допустимый уровень радиационных повреждений “изменение прочностных характеристик, разрушение органических соединений, радиолиз воды и другие” конструкционных и защитных материалов;

в) допустимый уровень радиационного энерговыделения и температурного распределения в конструкционных и защитных материалах.

В соответствии с этим защиту подразделяют соответственно на:

- биологическую;

- радиационную;

- тепловую.

Радиационная и тепловая защиты, которые конструкционно часто бывают совмещены, необходимы только для мощных источников изучения ядерно-технических установок, таких, например, как ядерные реакторы. При

работе с изотопными источниками нео6ходимость в радиационной и тепловой защите обычно не возникает.

Защиты подразделяются на следующие типы:

- сплошная защита, целиком окружающая источники излучения;

- раздельная защита, когда наиболее мощные источники излучения окружает первичная защита (например, первичная защита активной зоны ядерного реактора), а между первичной и вторичной защитой имеются также источники излучения (например, система теплоносителя ядерного реактора);

- теневая защита устанавливается между источником излучения и защищаемой областью, размеры которой ограничиваются лишь “тенью”, “отбрасываемой” защитой. Особенно часто такая защита используется при ограничении массы и габаритов;

- частичная защита - ослабленная защита для областей ограниченного доступа персонала, например, на судне с реактором в качестве энергетической установки частичная защита может осуществляться в направлении дна.

По компоновке выделяют гомогенную (из одного защитного материала) и гетерогенную (из различных материалов) защиты.

По форме внешней поверхности наиболее часто на практике встречается плоская, сферическая и цилиндрическая защиты.

По распространению нейтронов в средах можно выделить следующие группы материалов:

- легкие водородосодержащие (водород, вода, полиэтилен, гидриды металлов) - эффективные замедлители нейтронов;

- легкие, не содержащие водород (углерода карбид бора), используемые при технических или технологических ограничениях на введение в защиту водородосодержащих сред;

- материалы, состоящие из элементов со средним атомным номером (бетон, породы, минералы);

- тяжелые материалы (железо, свинец, молибден, вольфрам, титан) для снижения потоков g-квантов (улучшают свойства защиты от быстрых нейтронов благодаря высоким сечениям неупругого рассеяния этих элементов);

- металловодородосодержащие среды.

Водород как материал защиты не представляет практического интереса, но как элемент он является хорошим замедлителем нейтронов и главным компонентом в большинстве защит от нейтронов. Барьерная защита из водорода обладает наилучшими защитными свойствами от нейтронов, отнесенными к единице массы.

Вода - наиболее часто используемый в защите водородосодержащий материал. Это обусловлено высокой ядерной плотностью водорода в воде, невысокой стоимостью, легкодоступностью, способностью заполнять все отведенное для нее пространство без образования щелей, пустота раковин в защите. Характеристики ослабления нейтронного излучения в воде рассчитаны и измерены достаточно полно.


7 Мероприятия по охране труда и технике безопасности

7.1 Анализ условий труда операторов на вычислительных центрах

Одним из основных направлений научно-технического прогресса является развитие электронной вычислительной техники и ее широкое применение в производстве, научно-исследовательских и проектно-конструкторских работах, плановых расчетах и сфере управления. В последнее время значительно расширился парк выпускаемых электронных вычислительных машин (ЭВМ). Уменьшение стоимости, габаритов, потребляемой энергии вместе с ростом вычислительных возможностей позволяет использовать ЭВМ в гораздо более широких масштабах, чем прежние поколения вычислительной техники. Широкое использование вычислительной техники в народном хозяйстве не только позволило повысить производительность труда, но и породило ряд проблем, в том числе и защиту работающих от вредных факторов, связанных с применением вычислительной техники.

Операторы ЭВМ, программисты и другие работники ВЦ сталкиваются с воздействием таких физически опасных и вредных производственных факторов, как повышенный уровень шума, повышенная температура внешней среды, отсутствие или недостаток естественного света, недостаточная освещённость рабочей зоны, электрический ток, статическое электричество, электромагнитное излучение и др. Многие сотрудники ВЦ связаны с воздействием таких психофизиологических факторов, как умственное перенапряжение, перенапряжение зрительных и слуховых анализаторов, монотонность труда, эмоциональные перегрузки.[36]

Воздействие указанных неблагоприятных факторов приводит к снижению работоспособности, вызываемое развивающимся утомлением. Появление и развитие утомления связано с изменениями, возникающими в процессе работы в центральной нервной системе, с тормозными процессами в коре головного мозга.

На температуру внешней среды большое влияние оказывают источники теплоты. Основным источником теплоты являются: ЭВМ, вспомогательное оборудование и приборы освещения. На суммарные тепловыделения помещений ВЦ оказывают влияние внешние источники теплоты, теплота, поступающая через окна от солнечной радиации и приток теплоты через непрозрачные ограждения конструкции. Их интенсивность зависит от района, ориентации помещения по частям света, материала наружных ограждений, цветовой гаммы и т.д. Повышенная температура внешней среды не создаёт нарушения состояния здоровья работающего, но вызывает дискомфортные ощущения, ухудшает самочувствие и понижает работоспособность.

Правильно спроектированное и выполненное освещение обеспечивает высокий уровень работоспособности, оказывает положительное влияние на работающих.

Проявление вредного воздействия шума на организм человека разнообразно: шум затрудняет разборчивость речи, вызывает снижение работоспособности и мешает нормальному отдыху.

Действие шума не ограничивается только на органы слуха. Через нервные волокна шум передаётся в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма. Люди, работающие в условиях повышенного шума, жалуются на быструю утомляемость, головную боль, бессонницу. У человека ослабляется внимание, страдает память.

Практически всё оборудование ЭВМ - электрические установки. Электрический ток, проходя через тело человека, оказывает на него сложное воздействие, вызывая термическое, электролитическое, механическое и биологическое действие (ожоги отдельных участков тела, изменение физико-химического состава крови и т.д.).

В ряде случаев наблюдались отравления работников при работах на копировально-множительных машинах. В последнее время поступают многочисленные жалобы на повышенную утомляемость и головную боль работников, обслуживающих видеотерминалы.

Длительное нахождение человека в зоне комбинированного воздействия различных неблагоприятных факторов может привести к профессиональному заболеванию.

Имеющийся в настоящее время комплекс разработанных организационных мероприятий и технических средств защиты показывают, что имеется возможность добиться значительных успехов в деле устранения воздействия на работающих опасных и вредных производственных факторов. Для безопасной организации работы оператора проводится ряд мероприятий по защите от поражения электрическим током, по снижению шума в ВЦ, проводят организацию отопления и вентиляции. Высокий уровень работоспособности также обеспечивает правильно спроектированное и выполненное освещение.

7.2 Меры по безопасности организации работ

Отопление

В помещениях ВЦ необходимо предусмотреть систему отопления. Она должна обеспечивать достаточное, постоянное и равномерное нагревание воздуха в помещениях в холодный период года, а также безопасность в отношении пожара и взрыва. При этом колебания температуры в течение суток не должны превышать 2-3°C; в горизонтальном направлении – 2°C на каждый метр длины, а в вертикальном – 1°C на каждый метр высоты помещения.