Смекни!
smekni.com

Устройства долговременного хранения данных на ПК (стр. 3 из 4)

Максимально достижимая при использовании данного метода плотность записи оценивается 150 Гбит/дюйм² (23Гбит/см²). В ближайшем будущем ожидается постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи — это технология, при которой биты информации, сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современных образцов — 100—150 Гбит/дюйм² (15-23 Гбит/см²), в дальнейшем планируется довести плотность до 400—500 Гбит/дюйм² (60—75 Гбит/см²).

Жесткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи (англ. Heat assisted magnetic recording — HAMR) на данный самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2008 год), есть лишь экспериментальные образцы, но их плотность уже достигла 1Тбит/дюйм² (150Гбит/см²). Разработка HAMR-технoлогий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 15 − 20 Гбит/дюйм², а Seagate Technology предполагает, что смогут довести плотность записи HAMR-носители до 50 Тбит/дюйм²[5]. Широкого распространения данной технологии следует ожидать в 2010 – 2013 годах.

RAID

RAID (англ. redundant array of independent/inexpensive disks) — дисковыймассивнезависимыхдисков. Служат для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0). [7]

Аббревиатура RAID изначально расшифровывалась как «Redundant Arrays of Inexpensive Disks» («избыточный (резервный) массив недорогих дисков», так как они были гораздо дешевле RAM). Именно так был представлен RAID своими исследователями: Паттерсоном (David A. Patterson), Гибсоном (Garth A. Gibson) и Катцом (Randy H. Katz) в 1987 году. Со временем RAID стали расшифровывать как «Redundant Array of Independent Disks» («избыточный (резервный) массив независимых дисков»), потому как для массивов приходилось использовать и дорогое оборудование (под недорогими дисками подразумевались диски для ПЭВМ). [8]

Далее будут рассмотрены только уровни RAID 0,1,5.

RAID 0 («Striping») — дисковый массив из двух или более жёстких дисков с отсутствием избыточности. Информация разбивается на блоки данных (Ai) и записывается на оба/несколько диска поочередно.

За счёт этого существенно повышается производительность (+) (от количества дисков зависит кратность увеличения производительности), но страдает надёжность всего массива. (При выходе из строя любого из входящих в RAID 0 винчестеров полностью и безвозвратно пропадает вся информация) (-). В соответствии с теорией вероятностей, надёжность массива RAID 0 равна произведению надёжностей составляющих его дисков, каждая из которых меньше единицы, т. о. совокупная надёжность заведомо ниже надёжности любого из дисков. RAID 0 может быть реализован как программно, так и аппаратно.

RAID 1 (Mirroring — «зеркало»). Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения за счёт распараллеливания запросов. Имеет высокую надежность - работает до тех пор пока функционирует хотя бы один диск в массиве. Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объем одного жёсткого диска (классический случай, когда массив состоит из двух дисков).

Изначально предполагается, что жёсткий диск — вещь надёжная. Соответственно, вероятность выхода из строя сразу двух дисков равна (по формуле) произведению вероятностей, то есть ниже на порядки. К сожалению, данная теоретическая модель не достаточно полно отражает процессы, протекающие в реальной жизни. Так, обычно два винчестера берутся из одной партии и работают в одинаковых условиях, а при выходе из строя одного из дисков нагрузка на оставшийся увеличивается, поэтому на практике при выходе из строя одного из дисков следует срочно принимать меры — вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва Hot Spare. Достоинство такого подхода — поддержание постоянной надёжности. Недостаток — ещё большие издержки (то есть стоимость трёх винчестеров для хранения объёма одного диска).

Зеркало на многих дисках — RAID 1+0. При использовании такого уровня зеркальные пары дисков выстраиваются в «цепочку», поэтому объём полученного тома может превосходить ёмкость одного жёсткого диска. Достоинства и недостатки такие же, как и у уровня RAID 0. Как и в других случаях, рекомендуется включать в массив диски горячего резерва Hot Spare из расчёта один резервный на пять рабочих .

RAID 5. Блоки данных и контрольные суммы циклически записываются на все диски массива, отсутствует выделенный диск для хранения информации о четности, нет асимметричности конфигурации дисков. Самый популярный из уровней, в первую очередь благодаря своей экономичности. Жертвуя ради избыточности ёмкостью всего одного диска из массива, мы получаем защиту от выхода из строя любого из винчестеров тома. На запись информации на том RAID 5 тратятся дополнительные ресурсы, так как требуются дополнительные вычисления, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких накопителей массива распараллеливаются.

Недостатки RAID 5 проявляются при выходе из строя одного из дисков — весь том переходит в критический режим, все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности значительно снижается (так как уменьшена избыточность массива).

RAID 0 можно создать, задействовав только ДВА жестких диска!

RAID 1+0 можно создать, задействовав 4 диска.

RAID 5 можно создать, задействовав от 3 до 6 дисков.

Одновременно создать RAID 5 и любой другой RAID на одних и тех же дисках (как при создании RAID 1 и RAID 0 из примера) не представляется возможным. [9,11,12]

Флэш-память

Флэш-память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. [6]

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи — это намного больше, чем способна выдержать дискета или CD-RW. Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна, компактна и дёшева.

Недостатком, по сравнению с жёсткими дисками, является относительно малый объём: для самых больших флэш-карт объём составляет около 16 Гб. Работа по устранению этого недостатка уже ведётся: компания Apple выпустила флэш-носители ёмкостью до 64 Гб. А в конце 2007 года компания Toshiba объявила о начале выпуска флэш-носителей объёмом до 256 Гб.

Флэш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора. Скорость некоторых устройств с флэш-памятью может доходить до 100 Мб/с. В основном флэш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 × 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.

Основное слабое место флэш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Флэш-память наиболее известна применением в USB флэш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флэш-носители полностью вытеснили с рынка дискеты.

Сейчас активно рассматривается возможность замены жёстких дисков на флэш-память. В результате компьютер будет включаться мгновенно, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100$», который активно разрабатывается для стран третьего мира, жёсткий диск будет заменять флэш-память объёмом 1 Гб.

Заключение

В настоящее время пользователь ПК располагает возможностью выбора устройств долговременного хранения информации из широчайшего спектра, предложенного на рынке компьютерной техники. Обзор таких устройств показывает наличие общих принципов действия при работе на ПК. Вместе с тем следует обращать внимание на существенные различия в технических характеристиках и условиях применения внешних запоминающих устройств. Благодаря такому разнообразию каждый пользователь осуществляет выбор средств хранения данных, исходя из рабочих требований либо собственных предпочтений.

Постоянный рост популярности, совершенствование технической составляющей, увеличение емкости устройств хранения данных происходит по причине освоения современных технологий. Для борьбы с несанкционированным производством должны применяться комплексные меры, направленные в поддержку фирм-производителей емких и надежных накопителей.