Содержание
Задание 1
Задание 2
Использованная литература
Приложение
Таблица 1
Исходные данные
потребительские расходы | среднемесячная номинальная начисленная заработная плата | |
Белгородская область | 4678,7 | 8428,1 |
Брянская область | 4464,1 | 6385,7 |
Владимирская область | 3386,2 | 7515,5 |
Воронежская область | 4913,2 | 6666,7 |
Ивановская область | 3592 | 6545,2 |
Калужская область | 5900,4 | 8483,8 |
Костромская область | 3925 | 7492,4 |
Курская область | 4992,4 | 7150,6 |
Липецкая область | 5385,3 | 8617,1 |
Московская область | 9030,4 | 11752,4 |
Орловская область | 4338 | 6786,6 |
Рязанская область | 4406,1 | 7763,1 |
Смоленская область | 5128,7 | 7827,6 |
Тамбовская область | 5196 | 6267,5 |
Тверская область | 5875,9 | 8115,1 |
Тульская область | 4464,8 | 7723,3 |
Ярославская область | 5265,1 | 9012,8 |
г.Москва | 22024,2 | 18698,6 |
По исходным данным выполнить корреляционный анализ:
1.1. Построить корреляционное поле и предложить гипотезу о связи исследуемых факторов;
1.2. Определить коэффициенты корреляции;
1.3. Оценить статистическую значимость вычисленных коэффициентов корреляции
1.4. Сделать итоговые выводы
Рис. 1. Поле корреляции
По полю корреляции можно сделать вывод о прямолинейной связи между потребительскими расходами и среднемесячной номинальной начисленной заработной платой
Для определения коэффициента корреляции может быть использована встроенная функция (=КОРРЕЛ(B4:B21;C4:C21)).
Так как коэффициент корреляции находится в диапазоне от 0,9 и более. То связь между потребительскими расходами и среднемесячной номинальной начисленной заработной платы весьма тесная
Оценку статистической значимости коэффициента корреляции проведем с помощью t-статистики Стьюдента.
Выдвигаем гипотезу Н0 о статистически незначимом отличии показателей от нуля а0=а1=rху=0.
tтабл для числа степеней свободы df=n-2=18-2=16 и a=0,05 составит 2,12.
Расчетный коэффициент Стьюдента находятся по формуле:
Фактические значения t-статистики превосходят табличное значение на 5% -м уровне значимости при числе степеней свободы 16, tтабл = 2,12. Таким коэффициент корреляции является статистически значимым Гипотеза Н0 не принимается.
Рассчитаем доверительный интервал:
Таким образом, с вероятностью 95% можно утверждать, что коэффициент корреляции находится в диапазоне от 0,81 до 1.Связь между потребительскими расходами и среднемесячной номинальной начисленной заработной платой прямолинейная и весьма тесная, это можно заключить исходя из распределения фактических значений по полю корреляции и расчетного значения коэффициента корреляции
Так как коэффициент корреляции находится в диапазоне от 0,9 и более, то связь между потребительскими расходами и среднемесячной номинальной начисленной заработной платы весьма тесная.
Коэффициент корреляции является статистически значимым с вероятностью 95% можно утверждать, что он находится в диапазоне от 0,81 до 1.
Таблица 3
Исходные данные
№ п/п | Чистый доход, млрд долл. США, у | Рыночная капитализация компании, млрд долл. США, х4 |
1 | 0,9 | 40,9 |
2 | 1,7 | 40,5 |
3 | 0,7 | 38,9 |
4 | 1,7 | 38,5 |
5 | 2,6 | 37,3 |
6 | 1,3 | 26,5 |
7 | 4,1 | 37 |
8 | 1,6 | 36,8 |
9 | 6,9 | 36,3 |
10 | 0,4 | 35,3 |
11 | 1,3 | 35,3 |
12 | 1,9 | 35 |
13 | 1,9 | 26,2 |
14 | 1,4 | 33,1 |
15 | 0,4 | 32,7 |
16 | 0,8 | 32,1 |
17 | 1,8 | 30,5 |
18 | 0,9 | 29,8 |
19 | 1,1 | 25,4 |
20 | 1,9 | 29,3 |
21 | -0,9 | 29,2 |
22 | 1,3 | 29,2 |
23 | 2 | 29,1 |
24 | 0,6 | 27,9 |
25 | 0,7 | 27,2 |
По исходным данным выполнить регрессионный анализ:
2.1. Рассчитать параметры уравнения линейной парной регрессии;
2.2. Дать с помощью общего (среднего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом;
2.3. Оценить качество уравнения с помощью средней ошибки аппроксимации.
2.4. Оценить статистическую надежность результатов регрессионного моделирования с помощью критерия Стъюдента и F-критерия Фишера.
2.5. Сделать итоговые выводы.
Линейная модель:
Расчеты для определения параметров модели произведены в MicrosoftExel.
Рис. 2.1. Результаты регрессионного анализа
В результате расчетов получаем уравнение регрессии:
При росте рыночной капитализации компании на 1 млр. руб. чистый доход возрастает на 0,0818 млрд. руб.
Коэффициент эластичности будем находить по следующей формуле:
Э=1,72 показывает, что чистый доход возрастает на 1,72% при росте рыночной капитализации компании на 1%.
Средняя ошибка аппроксимации находится как средняя арифметическая простая из индивидуальных ошибок по формуле:
Расчетные значения в среднем отличаются от фактических на 59%. Так как средняя ошибка аппроксимации превышает 10%, то полученную модель нельзя считать точной.
Так как значение коэффициента корреляции до 0,3 , то связь между чистым доходом и рыночной капитализацией компании слабая.
Оценку статистической значимости параметров регрессии проведем с помощью t-статистики Стьюдента.
Выдвигаем гипотезу Н0 о статистически незначимом отличии показателей от нуля а0=а1=rху=0.
tтабл для числа степеней свободы df=n-2=25-2=23 и a=0,05 составит 2,07.
Расчетные коэффициенты Стьюдента в Excel:
Фактические значения t-критерия меньше табличного значение на 5% -м уровне значимости при числе степеней свободы 23, tтабл = 2,07. Таким образом коэффициенты статистическим не значимы. Гипотеза Н0 принимается.
Коэффициент детерминации равен квадрату коэффициента линейной корреляции
7% вариации чистого дохода объясняется вариацией рыночной капитализацией компании. А 93% вариацией других неучтенных факторов.
Критерий F-Фишера:
Табличное значение F- критерия при доверительной вероятности 0,95 при V1=k=1 и V2=n-k-1=25-1-1=23 составляет Fтабл =4,28.
Поскольку Fрас<Fтабл., то уравнение регрессии является не адекватным.
Уравнение линейной однофакторной зависимости рыночной капитализации компании от чистого дохода имеет вид:
Это означает, что при росте рыночной капитализации компании на 1 млр. руб. чистый доход возрастает на 0,0818 млрд. руб. Согласно расчету коэффициента эластичности чистый доход возрастает на 1,72% при росте рыночной капитализации компании на 1%.
Так как средняя ошибка аппроксимации превышает 10% (59%>10%), то полученную модель нельзя считать точной.
Значение коэффициента корреляции до 0,3 , то связь между чистым доходом и рыночной капитализацией компании слабая.
Параметры регрессии статистически не значимы. 7% вариации чистого дохода объясняется вариацией рыночной капитализацией компании. А 93% вариацией других неучтенных факторов. Поскольку Fрас<Fтабл., то уравнение регрессии является не адекватным.
1. Арженовский С.В., Федосова О.Н. Эконометрика: Учебное пособие/Рост, гос. экон. унив. - Ростов н/Д., - 2002.