Смекни!
smekni.com

Исследование структурной надежности методом статистического моделирования (стр. 4 из 14)

Поясним несколько шагов расчета. Поскольку Q0 = 1 (при отсутствии путей сеть разорвана), то для Q1 из (1.13)

. Делаем следующий шаг и, согласно (1.13), получаем:
и так далее.

Рассмотрим подробнее шаг, на котором учитывается вклад пути 9. Произведение показателей надежности составляющих его элементов, записанное во втором столбце таблицы 1.1, переносится в третий. Далее в квадратных скобках записана вероятность разрыва всех предыдущих восьми путей, накопленная в четвертом столбце (начиная с первой строки), с учетом правила (1.7), согласно которому показатели надежности всех элементов, вошедших в путь 9, заменяются единицами. Вклад четвертой, шестой и седьмой строк оказывается равным нулю по правилу 1. Далее выражение, стоящее в квадратных скобках, упрощается по правилам (1.9) следующим образом:

.

Аналогичным образом производится расчет относительно всех других путей.

Использование рассматриваемого метода позволяет получить общую формулу структурной надежности, содержащую в рассмотренном случае всего 15 членов вместо максимального числа 211=2048, получающегося при непосредственном перемножении вероятностей отказов этих путей. При машинной реализации метода удобно представить все элементы сети в позиционном коде строкой бит и использовать встроенные булевы функции для реализации логических элементов преобразований (1.9).

До сих пор рассматривались показатели структурной надежности сети относительно выделенной пары узлов. Совокупность таких показателей для всех или некоторого подмножества пар может достаточно полно характеризовать структурную надежность сети в целом. Иногда используется другой, интегральный, критерий структурной надежности. По этому критерию сеть считается исправной, если имеется связь между всеми ее узлами и задается требование на вероятность такого события.

Для расчета структурной надежности по этому критерию достаточно ввести обобщение понятия пути в виде дерева, соединяющего все заданные узлы сети. Тогда сеть будет связана, если существует, по крайней мере, одно связывающее дерево, и расчет сводится к перемножению вероятностей отказа всех рассматриваемых деревьев с учетом наличия общих элементов. Вероятность отказа дерева s определяется аналогично вероятности отказа пути, то есть:


,

где pis – показатель надежности элемента i, входящего в дерево s; ns – число элементов в этом дереве.

Рассмотрим для примера простейшую сеть в виде треугольника, стороны которого взвешены показателями надежности а, b, с соответствующих ветвей. Для связности такой сети достаточно существования, по крайней мере, одного из деревьев аb, bс, са. Используя рекуррентное соотношение (1.4), определяем вероятность связности этой сети

H cb = ab + bca + cab.

Если а = b = с = р, получаем следующее значение вероятности связности, которое легко проверить перебором:

H cb = 3р2 – 2р3.

Для расчета вероятности связности достаточно разветвленных сетей вместо перечня связывающих деревьев, как правило, удобнее пользоваться перечнем сечений {σ} которые приводят к потере связности сети по рассматриваемому критерию. Легко показать, что для сечения справедливы все введенные выше правила символического умножения, только вместо показателей надежности элементов сети в качестве исходных данных следует использовать показатели ненадежности q = 1 – p. Действительно, если все пути или деревья можно считать включенными “ параллельно ” с учетом их взаимозависимости, то все сечения включены в этом смысле “ последовательно ”. Обозначим вероятность того, что в некотором сечении s нет ни одного исправного элемента, через

. Тогда можно записать

,(1.14)

где qis – показатель ненадежности элемента, входящего в пятое сечение.

Вероятность Нcb связности сети можно тогда представить аналогично (1.6) в символическом виде:

,(1.15)