Смекни!
smekni.com

Нейронні мережі в системах керування динамічними обєктами (стр. 2 из 11)

procedure BitBtn5Click (Sender: TObject);

Обробляє натискання на кнопку "Save". Виконує збереження у файлі поточного стану мережі і навчальних зображень у спеціальному файлі.

procedure BitBtn4Click (Sender: TObject);

Обробляє натискання на кнопку "Load". Реалізує завантаження із спеціального файлу, збережені в ньому раніше важелі зв’язків нейронів нейронної мережі і навчальні зображення.

Інші методи є допоміжними і слугують для малювання форми або для забезпечення інтерфейсу і спеціальних дій і викликаються із основних функцій, що описані вгорі.

Список літератури

1. Баас Р., Фервай М., Гюнтер Х. Delphi 7: полное руководство. – К.: Издательская группа BHV, 2004. – 800 с.

2. Барский А.Б. Нейронные сети: распознавание, управление, принятие решений. – М.: Финансы и статистика, 2004. – 248 с.

3. Браславский И.Я., Зюзев А.М., Ишматов З.Ш., Аверьянов М.А., Барац Е.И., Костылев А.В. Синтез нейронного наблюдателя для асинхронного привода с прямым управлением моментом // Электротехника. – 2001. – № 12. – С. 31 – 34.

4. Кей А. Искусственные нейронные сети // Computerworld. – 2001. – № 9. – С. 34 – 38.

5. Клепиков В.Б., Сергеев С.А., Махотило К.В., Обруч И.В. Применение методов нейронных сетей и генетических алгоритмов в решении задач управления электроприводами. – М.: Электротехника, 1999. – № 5. –
С. 2 – 6.

6. Клепиков В.Б., Сергеев С.А., Махотило К.В., Обруч И.В. Применение методов нейронных сетей и генетических алгоритмов в решении задач управления электроприводами // Электротехника. – 1999. – № 5. – С. 2 – 6.

7. Комашинский В.И. Нейронные сети и их применение в системах управления и святи. – М.: "Горячая линия – Телеком", 2003. – 96 с.

8. Методические указания к лабораторной работе "Нейронная сеть Хебба". – Харьков: НТУ "ХПИ", 2002. – 12 с.

9. Назаров А., Лоскутов А. Нейросетевые алгоритмы прогнозирования и оптимизации систем. – С-Пб.: Наука и Техника, 2003. – 492 с.

10. Перехов В.М. Современные способы управления и их применение в электроприводе // Электротехника. – 2000. – № 2. – С. 25 – 28.

11. Терехов В.А., Ефимов Д.В., Тюкин И.Ю., Антонов В.Н. Нейросетевые системы управления. – С-Пб: Издательство С.-Петербургского университета, 1999. – 265 с.

12. Уоссермен Ф. Нейрокомпьютерная техника. – М.: Мир, 1997. – 430 с.

13. Щетинин В.Г. Многослойная самоорганизация нейронных сетей оптимальной сложности // Автоматика и вычислительная техника. – Рига, 1998. – j4. – С. 30 – 37.

14. Handschin E., Kehlmann D., Hoffman W. Fault diagnosis in electrical energy systems using devic-specific artificial neural networks // Eng. Intell. Syst. Electr. Eng. Commun. – 1994. – Vol. 2, №. 4. – P. 255 – 262.

15. Hsieh K.-R., Chen W.-T. A Neural Network Model which Combines Unsupervised and Supervised Learning // IEEE Trans. on Neural Networks. – 1993. – Vol. 4, №. 2. – P. 35 – 39.

16. Mielczarska G.M., Mielczarski W. Применение нейронных сетей для оценки динамического состояния синхронных генераторов // Dynamic state estimation of a synchronous generator using neural-networks techniques. – № 92/15. – Inst. Eng., Austral. – 1992. – Р. 21 – 28.

17. Sankar K. Mitra S. Multilayer Perceptron, Fuzzy Sets and Classification // IEEE Transactions on Neural Networks. – Vol. 3, №5. – 1992. – Р. 683 – 696.

18. Srinivasan D. A novel approach to electrical load Forecasting based on a neural network // INNC-91. – 1991. – Р. 1172 – 1177.

19. Trzynadlowski A.M. Application of neural networks to the optimal control of Three-phase Voltage-Controlled Inverters // IEEE Trans. on Power Electronics. – 1994. – Vol. 9, №4. – Р. 34 – 38.

20. Trzynadlowski A.M., Legowski S. Application of neural networks to the optimal control of three-phase voltage-controlled inverters // IEEE Trans. Power Electron. – 1999. – Vol. 9, №.4. – P. 397 – 404.

21. Vaubois G. de La C., Moulinoux С., Derot B. The N Programming Language // Neurocomputing. – Vol. F68. – P. 89 – 92.

22. Widrow B., Lehr M.A. 30 Years of Adaptive Neural Networks: Perception, Madeline, and Back propagation // IEEE Computer Society. – 1992. –
Р. 327 – 354.

Пояснювальна записка

зміст

1. Нейронні мережі – основні поняття і визначення

2. Історія еволюції нейронних мереж. Їх основні моделі

2.1. Модель Маккалоха

2.2. Модель Розенблата

2.3. Модель Хопфілда

2.4. Мережі зі зворотним розповсюдженням

3. Основні алгоритми навчання і функціонування нейронних мереж

3.1. Алгоритм навчання з вчителем (алгоритм зворотного розповсюдження багатошарових нейронних мереж)

3.2. Алгоритм навчання без вчителя (алгоритм прямого розповсюдження нейронних мереж)

3.3. Алгоритми функціонування мереж Хопфілда і Хемінга

4. Мережа Хебба. Алгоритм Хебба навчання нейронних мереж

5. Області вживання і задачі розв’язувані за допомогою нейронних мереж

6. Сучасні проекти і вироби, засновані на нейронних мережах

1. Нейронні мережі – основні поняття і визначення

В останні десятиліття у світі бурхливо розвивається нова прикладна галузь математики, що спеціалізується на штучних нейронних мережах (НМ). Актуальність досліджень у цьому напрямку підтверджується масою різних застосувань НМ. Це автоматизація процесів розпізнавання образів, адаптивне керування, апроксимація функціоналів, прогнозування, створення експертних систем, організація асоціативної пам'яті і багато інших додатків. За допомогою НМ можна, наприклад, пророкувати показники біржового ринку, виконувати розпізнавання оптичних або звукових сигналів, створювати системи, що самонавчаються, здатні керувати автомашиною при паркуванні або синтезувати мову за текстом.

Широке коло задач, розв'язувані НМ, не дозволяє в даний час створювати універсальні, могутні мережі, змушуючи розробляти спеціалізовані НМ, що функціонують за різними алгоритмами. Самі ж моделі НМ можуть бути програмного й апаратного виконання.

Незважаючи на істотні розходження, окремі типи НМ володіють декількома загальними рисами. Так в основу штучних нейронних мереж покладені наступні риси живих нейронних мереж:

– простий обробний елемент - нейрон;

– дуже велике число нейронів бере участь в обробці інформації;

– один нейрон зв'язаний з великим числом інших нейронів (глобальні зв'язки);

– що змінюються по вазі зв'язку між нейронами;

– масована паралельність обробки інформації.

Прототипом для створення нейрона послужив біологічний нейрон головного мозку. Біологічний нейрон має тіло, сукупність відростків – дендридів (синапсів), по яких у нейрон надходять вхідні сигнали, і відросток – аксон, що передає вихідний сигнал нейрона іншим клітинам. Біологічна модель штучного нейрона приведена на рис. 1:

Рис. 1 Штучний нейрон

Спрощене функціонування нейрона можна представити в такий спосіб:

1) Нейрон одержує від дендридів набір (вектор) вхідних сигналів;

2) У тілі нейрона оцінюється сумарне значення вхідних сигналів. Однак входи нейрона нерівнозначні. Кожен вхід характеризується деяким ваговим коефіцієнтом, що визначає важливість інформації, що надходить по ньому. Таким чином, нейрон не просто підсумовує значення вхідних сигналів, а обчислює скалярний добуток вектора вхідних сигналів і вектора вагових коефіцієнтів;

3) Нейрон формує вихідний сигнал, інтенсивність якого залежить від значення обчисленого скалярного добутку. Якщо - воно не перевищує деякого заданого порогу, то вихідний сигнал не формується зовсім – нейрон "не спрацьовує";

4) Вихідний сигнал надходить на аксон і передається дендридам інших нейронів.

У такий спосіб поточний стан нейрона визначається, як зважена сума його входів плюс сигнал зсуву (зазвичай це 1), помножений на його коефіцієнт:

(1.1)

де S – сумарний вхідний сигнал; wi (

)
– вагові коефіцієнти зв'язків вхідних сигналів х1, …, хп; w0 – ваговий коефіцієнт зв'язку сигналу зсуву.

А вихід нейрона є функція його стану:

y = f(s) (1.2)

Виходячи з цього, біологічне представлення нейрону замінюють моделлю процесорного елемента наступного виду:

Нелінійна функція f називається активаційною і може мати різний вигляд. Найбільш розповсюдженими функціями активації є бінарна

(1.3)

або біполярна

(1.4)

Багато авторів при описанні моделі нейрона використовують не сигнал зсуву, а поріг

нейрона, що приводить до еквівалентної моделі елемента. У цьому випадку вираження (1.3) і (1.4) приймають відповідно вигляд:

(1.5)

(1.6)

де

(1.7)

Графічне зображення бінарної і біполярної функцій активації для цього випадку представлене на рис. 3а і 3b.

Зі зіставлення виразів (1.1)–(1.3) і (1.4)–(1.6) випливає, що кожному значенню порогу нейрона може бути поставлений у відповідність ваговий коефіцієнт w0 зв'язку сигналу зсуву і навпаки.

Рідше використовуються лінійні бінарні або біполярні функції активації (рис. 3с и 3d):

(1.8)

де а дорівнює нулю для бінарних вихідних сигналів нейронів і а дорівнює мінус одиниці для біполярних сигналів; k, a0 постійні коефіцієнти.

Також широко використовуються бінарна сигмоидальная або логічна сигмоидальная функція (рис. 3e):