Введение
Глава 1. Распределенные вычислительные системы
Роль распределенных вычислительных систем в решении современных задач
Инструментальная система DVM для разработки параллельных программ
Глава 2. Графический интерфейс
Что такое графический интерфейс
Требования к графическому интерфейсу
Требования к графическому интерфейсу DVM-системы
Модель графического интерфейса
Глава 3. Формальная модель графического интерфейса
Средства построения формальной модели графического интерфейса
Формальная модель графического интерфейса
Глава 4. Графический интерфейс DVM-системы – ГРИФ
Как устроен ГРИФ
Детальное описание графического интерфейса ГРИФ
Заключение
Приложение
Список литературы
Данная работа посвящена проблемам разработки графического интерфейса для DVM-системы. Задача построения такого интерфейса еще по существу пока не ставилась, поскольку система активно развивалась, и ее интерфейсы заметно менялись. Система базируется на новой языковой модели, в ней реализованы новые методы функциональной отладки программ и отладки эффективности. Практическое использование системы для разработки сложных параллельных программ неизбежно вносило и вносит коррективы в ее алгоритмы и интерфейсы. В настоящее время отсутствие графического интерфейса становится заметным недостатком системы. Однако построение графического интерфейса для сложной программной системы, которая находится в стадии развития, является сложной задачей, решение которой можно существенно упростить путем проектирования обобщенной, формальной модели графического интерфейса DVM-системы. Такая абстрактная модель, позволит оценивать разрабатываемые варианты интерфейса с точки зрения соответствия модели, и проектировать оптимальные интерфейсы. Данная работа предлагает новый инструмент, предназначенный для формализации проектирования новых интерфейсов. В ее рамках был разработан новый интерфейс на языке Java, и проведена его оценка в сравнении с построенной формальной моделью.
Глава 1. Распределенные вычислительные системы
Роль распределенных вычислительных систем в решении современных задач
Последние три столетия преподносили человеку новые, немыслимые до того технологии, определяющие весь ход дальнейшего научно-технического прогресса. Появление в 18-м веке механических машин перевернуло человеческие представления о труде. Паровые машины, изобретенные в 19-м веке, открыли новые мощности. 20-й век был ознаменован появлением вычислительной техники. Это открыло для человека новые, гораздо более эффективные способы хранения, передачи и обработки информации. С появлением этих способов, стали возрастать и потребности. Развитие промышленных технологий ставило задачи построения сложных систем. Аналитическое проектирование стало все меньше подходить для этого. Компьютеры стали использоваться для моделирования процессов и систем. Потребность во все более высокой производительности вычислительных систем стала расти экспоненциально.
Существует несколько доступных путей увеличения производительности. Можно улучшить аппаратное обеспечение, используя более высокопроизводительный процессор, можно улучшать программное обеспечение. В первом случае сразу становится виден предел повышения производительности (на каждом этапе развития процессоростроения). Во втором – возникают те же проблемы. Хотя явно нельзя определить «верхний предел» эффективности алгоритма, но и изобретать алгоритмы – дело непредсказуемой сложности.
Но есть еще третий путь – параллельные вычисления. Многие алгоритмы хорошо масштабируемы, и потому выполнение их параллельно на нескольких вычислительных устройствах, даёт большой выигрыш в скорости выполнения. И именно этот третий путь, возможно является своеобразным толчком к появлению главного достижения 21-го века – внедрения вычислительных сетей. Однако, параллельные вычисления - только первая ступенька на этом пути. Еще не существует достаточного количества программных средств, позволяющих писать и, что не менее важно, отлаживать параллельные программы.
Вообще многопроцессорные системы классифицируются по признаку обмена данными между процессорами. Существуют две основные модели параллельного выполнения программ – модель передачи сообщений, и модель взаимодействия через общую память.
В первой модели программа представляет собой систему процессов, взаимодействующих с помощью передачи сообщений. Первая модель может быть использована на любых кластерах.
Во второй модели параллельная программа представляет собой систему нитей (thread), взаимодействующих посредством общих переменных и примитивов синхронизации. Нить – это легковесный процесс имеющий с другими процессами общие ресурсы, в том числе – общую оперативную память. Вторая модель может быть использована только на DSM-кластерах, то есть кластерах, на которых аппаратно или программно-аппаратно реализована распределенная общая память, позволяющая выполняющимся на разных узлах программам взаимодействовать через общие переменные.
Однако, обе эти модели в чистом виде были неудобны для разработчика. Они заставляют его иметь дело с параллельными процессами и низкоуровневыми примитивами передачи сообщений или синхронизации. Особенно большие трудности возникают при необходимости использования многоуровневого параллелизма (например, параллелизм между разными подзадачами и параллелизм внутри подзадач).
Кроме того, программист обычно вынужден иметь и сопровождать два варианта программы – последовательный и параллельный. В качестве примера можно привести несколько подходов различающихся моделями и языками параллельного программирования.
Модель передачи сообщений. MPI.
В этой модели параллельная программа представляет собой множество процессов, каждый из которых имеет собственное локальное адресное пространство. Взаимодействие процессов - обмен данными и синхронизация осуществляется посредством передачи сообщений. В 1993 году был разработан стандарт MPI. К числу приятных особенностей MPI относятся :
- возможность совмещения передачи сообщений и вычислений;
- широкий набор коллективных операций;
- возможность задания типа передаваемой информации;
- широкий набор редукционных операций;
К недостаткам относится то, что интерфейс слишком сложный и громоздкий.
Модель параллелизма по данным. HPF.
В этой модели нет понятия процесса как такового, и, следовательно, нет передачи сообщений и синхронизации. Программист указывает какие данные на какой процессор распределять, а компилятор сам распределяет вычисления таким образом, чтобы каждый узел работал со своими локальными данными. При этом достигается высокая локализация данных, а программа сохраняет удобный «последовательный» стиль.
Модель параллелизма по управлению. OpenMP.
Эта модель возникла в применении к мультипроцессорам. Вместо термина «нить» она использует специальные конструкции – параллельные циклы и секции. Создание и уничтожение нитей, распределения по ним витков циклов – все это делал сам компилятор.
Инструментальная система DVM для разработки параллельных программ
В 1993 году, в институте Прикладной Математики имени М.И.Келдыша РАН, разработана новая модель, объединяющая достоинства прочих. Это - модель DVM. Модель положена в основу языков С-DVM и Fortran-DVM, которые являются расширениями языков C и Fortran, соответственно. Это модель использует сразу два вида параллелизма : по данным и по управлению. Программист сам, под свою ответственность распределяет между процессорами блоки данных и вычисления. Также самостоятельно программист указывает общие блоки памяти, доступные одному процессу на запись, а остальным на чтение, определяет точки обновления таких общих блоков памяти и вручную распределяет между процессами витки циклов. Также модель имеет набор редукционных операций. Таким образом, вся ответственность за правильное распределение данных и вычислений лежит на самом программисте, но это, в то же самое время, дает ему огромную свободу при распределении задачи, делая DVM-модель гибкой.
Языки параллельного программирования C-DVM и Fortran-DVMпредставляют собой стандартные языки расширенные спецификациями параллелизма, причем, эти спецификации прозрачны для стандартных компиляторов. Это значительно упрощает понимание программ, их использование (в последовательном варианте программа может прогоняться на любой машине), и отладку.
Основная работа по реализации модели выполнения параллельной программы (например, распределение данных и вычислений) осуществляется динамически специальной системой - системой поддержки выполнения DVM-программ. Это позволяет обеспечить динамическую настройку DVM-программ при запуске (без перекомпиляции) на параметры приложения (количество и размер массивов данных) и конфигурацию параллельного компьютера (количество процессоров и их производительность). Тем самым программист получает возможность иметь один вариант программы для выполнения на последовательных ЭВМ и параллельных ЭВМ различной конфигурации. То есть, в DVM-модели работает принцип «Написано однажды – работает везде.»
Модель выполнения программы можно упрощенно описать следующим образом
· Параллельная программа на исходном языке Фортран-DVM (или Си-DVM) превращается в программу на языке Фортран 77 (или Си), содержащую вызовы функций системы поддержки, и выполняющуюся в соответствии с моделью SPMD (одна программа – много данных) на каждом выделенном задаче процессоре.
· В момент запуска программы существует единственная её ветвь (поток управления), которая начинает свое выполнение с первого оператора программы сразу на всех процессорах многопроцессорной системы.
· Многопроцессорной системой (или системой процессоров) называется та машина, которая предоставляется программе пользователя аппаратурой и базовым системным программным обеспечением. Число процессоров многопроцессорной системы и её представление в виде многомерной решетки задаётся в командной строке при запуске программы.
· Все объявленные в программе переменные (за исключением специально указанных "распределённых" массивов) размножаются по всем процессорам.
· При входе в параллельную конструкцию (параллельный цикл или область параллельных задач) ветвь разбивается на некоторое количество параллельных ветвей, каждая из которых выполняется на выделенном ей процессоре многопроцессорной системы.
· При выходе из параллельной конструкции все ветви сливаются в ту же самую ветвь, которая выполнялась до входа в параллельную конструкцию.
Разработанная таким образом DVM-система показала при тестировании следующий : эффективность DVM-программ гораздо выше, чем эффективность HPF, и вполне сравнима с эффективностью OpenMP и MPI.
DVM-система имеет свои средства отладки параллельных программ. Один из них – метод динамического контроля. Динамический контроль DVM-указаний позволяет проверить корректность распараллеливания программы посредством DVM-указаний, и основан на моделировании параллельного выполнения DVM-программы во время ее последовательного выполнения на одном процессоре Однако использование данного метода существенно замедляет выполнение программы и требует больших объемов дополнительной памяти. Поэтому, его следует применять только для программы со специально подобранными тестовыми данными.
Второй способ отладки – метод сравнения трассировок, который позволяет определить место в программе и момент, когда появляются расхождения в результатах вычислений. При трассировке вычислений выполняется сбор информации обо всех чтениях и модификациях переменных, о начале выполнения каждого витка цикла, о начале и конце выполнения параллельного цикла, о начале выполнения каждой параллельной задачи, о начале и конце выполнения группы задач. Трассировка вычислений, как и динамический контроль, требовательна к ресурсам вычислительной системы. Поэтому рекомендуется сначала трассировать программы с тестовыми данными, а затем уже переходить к реальным данным.
DVM-система, также имеет средства отладки производительности программ. Система поддержки выполнения DVM-программ во время выполнения программы на многопроцессорной ЭВМ (или однородной сети ЭВМ) накапливает информацию с временными характеристиками в оперативной памяти процессоров, а при завершении выполнения программы записывает эту информацию в файл, который затем обрабатывается на рабочих станциях в среде Windows 95/NT или UNIX специальным инструментом - визуализатором производительности. С помощью визуализатора производительности пользователь имеет возможность получить временные характеристики выполнения его программы с различной степенью подробности.
DVM-система содержит инструмент, называемый Предиктором, для произведения оценки эффективности программ на последовательной машине. С помощью предиктора пользователь имеет возможность получить оценки временных характеристик выполнения его программы на MPP или кластере рабочих станций с различной степенью подробности.
Глава 2. Графический интерфейс
Что такое графический интерфейс
Любая программа взаимодействует с пользователем или другими программами. Она получает некие указания и данные на вход, обрабатывает их и выдает результат своей работы – выходные данные, или указания для других программ. За время существования вычислительной техники программные системы многократно усложнились. Пользователь может хотеть получить от системы данные в удобном для него формате : текст, звук, изображение. Та часть системы, которая является посредником в передаче данных от пользователя к самой программе, конвертируя эти данные из понятного человеку представления, в понятные системе и наоборот, называется интерфейсом. Интерфейс, в данном контексте, это часть программы, наиболее близкая к пользователю, и превращающая остальную программу в «черный ящик». Пользователь уже может не знать как устроена программная система, ему приходится общаться только с интерфейсом. А интерфейс, в свою очередь обращается к системе. При этом сам интерфейс не несет никакой функциональной нагрузки системы. Его цель – быть максимально удобным для пользователя, и общаться с ним на удобном ему языке.
Графический интерфейс системы включает в себя все необходимые для работы с этой системой графические компоненты. В многооконных операционных системах это: окна, кнопки, меню, поля для ввода текста и т.д. Интерфейс должен уметь принимать от пользователя и передавать программе любые данные, передача которых между ними допускается этой программой.
При этом графический интерфейс выполняет сразу несколько функций:
· Он облегчает пользователю работу с программой, связывая функции программной системы с визуальными компонентами.
· Может подсказывать пользователю, какие действия тот может произвести с системой в текущий момент времени.
· Может производить проверку вводимых пользователем данных, до передачи
· Может уметь предоставлять пользователю результаты работы программной системы в любом удобном для пользователя виде. То есть, может предоставлять пользователю инструменты анализа полученных от системы данных.
· Может связывать между собой несколько разных программ. В том числе и операционную систему.
Построение интерфейса – это задача с которой рано или поздно сталкиваются разработчики любого программного обеспечения.. И удачно сделанный интерфейс, зачастую, не менее важный фактор в успешности программного продукта, чем его функциональность. В свою очередь, разработка интерфейса предъявляет свои требования программной системе. Например требования максимально формализованного обмена данными между пользователем и системой.
Таким образом – построение интерфейса это важная и нелегкая задача. Превращая систему в «черный ящик», неудачно спроектированный интерфейс способен «похоронить» в этом ящике некоторые возможности, особенности или свойства системы. Вообще, интерфейс должен повышать эффективность работы программы и понижать суммарную стоимость владения программой, снижением стоимости подготовки пользователя программы.
Требования к графическому интерфейсу
Графический интерфейс – это благо для пользователя, не так ли? Оказывается и он, призванный облегчить жизнь, способен причинять неудобства. И речь не только о том, что интерфейс может быть продуман человеком, который не был пользователем данной системы, и не знает как сделать его действительно «удобным». Речь о других возможных недостатках, которые могут обернуться серьезными проблемами.
Во-первых, это излишняя подробность и нарядность интерфейса. Для программы, в которой критично время ее выполнения, не всегда имеет смысл представлять результат ее работы сложными диаграммами, или другими элементами графического интерфейса, выведение на экран которых занимает много времени.
Во-вторых, это системные требования. Увеличение системных требований, вызванное внедрением графического интерфейса, не должно приводить к повышению общих системных требований выше разумного уровня.
В-третьих, интерфейс не должен скрывать точки входа в систему, если это не вызвано соображениями администрирования и безопасного функционирования системы.
В-четвертых, интерфейс должен быть реализован для всех операционных систем и архитектур, которые поддерживаются программной системой.
В-пятых, интерфейс должен перехватывать все исключительные ситуации, связанные с неправильным вводом данных, и обрабатывать их, сообщая об этом пользователю, и не прерывая работу программной системы.
В-шестых, интерфейс к программе все еще находящейся в стадии разработки, должен иметь внутреннюю структуру, облегчающую его модернизацию, и должен иметь соответствующее описание. На основе вышесказанного, можно сформулировать общие требования к интерфейсу DVM-системы.
Требования к графическому интерфейсу DVM-системы
Исходя из обобщенных требований к графическим интерфейсам, рассмотрим уточненные требования к графическому интерфейсу DVM-системы.
Графический интерфейс должен удовлетворять следующему:
· Графический интерфейс DVM-системы должен открывать все возможные точки входа в DVM-систему. Исключение составляет администрирование системы из соображений безопасности.
· Графический интерфейс DVM-системы должен осуществлять проверку всех значений, подаваемых пользователем на точки входа. В ряде случаев, интерфейс не должен допускать ввода таких значений, посредством блокировки соответствующих графических компонентов. Иначе, при несоответствии ожидаемому значению, графический интерфейс DVM-системы должен, перехватывать исключительные ситуации системы и, извещая об этом пользователя, позволять ему поменять входные данные.
· Графический интерфейс DVM-системы должен позволять повышать эффективность работы с системой, путем предоставления пользователю специальных инструментов, по поиску необходимой информации.(Анализ ошибок, использование диалоговых окон для работы с файлами и т.д.)
· Графический интерфейс DVM-системы должен предоставлять пользователю текстовый редактор, дающий возможность вносить изменения в исходный код, не переключаясь на другие приложения.
· Графический интерфейс DVM-системы должен работать под операционными системами Unix и Win95/NT.
· Графический интерфейс DVM-системы должен быль написан с учетом того, что DVM-система постоянно обновляется. Его исходный код должен быть спроектирован с учетом возможных изменений, и должен содержать все необходимые комментарии.
· Графический интерфейс DVM-системы должен корректно работать с сообщениями об ошибках выполнения команд DVM-системы, и при возникновении таких ошибок, выводить всю информацию на экран.
· Графический интерфейс DVM-системы должен хранить в доступном пользователю виде, информацию о проделанных операциях с DVM-системой, и, по возможности, выдавать пользователю разнообразные подсказки, для снижения суммарной стоимости владения программой.
Модель графического интерфейса
Как стало видно, известен ряд свойств, которым должен удовлетворять графический интерфейс DVM-системы. Однако, сам интерфейс удовлетворяющий всем этим требованиям еще не построен. В настоящее время продолжается развитие и совершенствования DVM-системы, расширяется круг её возможностей. Это обстоятельство не позволяет создать окончательную версию графического интерфейса. Для облегчения этой работы в будущем создана модель, формально описывающая оптимальный интерфейс DVM-системы. Мной создана наиболее точная на сегодняшний день реализация этой модели. Когда будет завершена работа над DVM-системой, эта реализация, с использованием модели, может быть легко модифицирована и приведена к окончательному виду.
Глава 3. Формальная модель графического интерфейса