Смекни!
smekni.com

Данные о системе газоснабжения города (стр. 1 из 3)

БАЛАКОВСКИЙ ИНСТИТУТ ТЕХНИКИ, ТЕХНОЛОГИИ И

УПРАВЛЕНИЯ

ФАКУЛЬТЕТ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

КАФЕДРА УПРАВЛЕНИЕ И ИНФОРМАТИКА В ТЕХНИЧЕСКИХ СИСТЕМАХ

КУРСОВАЯ РАБОТА

по дисциплине «ЭВМ, вычислительные системы и сети»

ДАННЫЕ О СИСТЕМЕ ГАЗОСНАБЖЕНИЯ ГОРОДА

Выполнил

Принял

2008


СОДЕРЖАНИЕ

Введение

1 Разработка системы и расчёт её надёжности

1.1 Описание системы

1.2 Выбор элементов и расчёт надёжности системы

2 Расчёт надёжности передачи информации в системе

Заключение

Список использованной литературы


ВВЕДЕНИЕ

С целью совершенствования работы, в том числе в условиях рынка, особое внимание в системе управления газовым хозяйством следует обратить на вопросы автоматизации учёта газа в процессе газоснабжения и как следствие – на вопросы повышения оперативности и достоверности получаемой технологической информации. Эта задача может быть решена путём взаимоувязки технических комплексов по учёту расхода газа с программным обеспечением на предприятии.

Автоматизированная система газоснабжения города предназначена для централизованного учёта потребления природного газа на объектах газоснабжения, оснащённых измерительными техническими средствами, контроля параметров газоснабжения, оперативной оценки текущего потребления и управления параметрами газоснабжения.


1. РАЗРАБОТКА СИСТЕМЫ И РАСЧЁТ ЕЁ НАДЁЖНОСТИ

1.1 ОПИСАНИЕ СИСТЕМЫ

Система выполняет следующие функции:

¾ сбор, хранение, выдача (за расчётный период) и обработка текущей информации о расходе газа и о значениях контролируемых параметров на объектах газоснабжения, оснащённых расходомерами;

¾ оперативное выявление аварийных ситуаций - контроль выхода значений контролируемых параметров за пределы некоторых значений;

¾ управление технологическими объектами, в том числе в нештатных аварийных (утечке газа) и предаварийных ситуациях, принятие необходимых мер для их устранения – перевод в дистанционное управление заслонками объекта управления.

Предлагаемая система содержит:

¾ первичные измерительные преобразователи - расходомеры;

¾ коммутатор для уменьшения числа соединений с ЭВМ;

¾ аналого-цифровой преобразователь для подачи сигналов на ЭВМ в цифровом коде;

¾ непосредственно ЭВМ со специализированным программным обеспечением, осуществляющая непрерывный циклический опрос модулей (датчиков) с периодом не менее одной минуты, выдачу собранной информации на монитор и её обработку;

¾ цифро-аналоговый преобразователь;

¾ блок усилителей для усиления сигналов, подаваемых на исполнительные механизмы по линиям связи (по одному усилителю на каждое направление связи);

¾ исполнительные механизмы для перекрытия поперечного сечения газовых труб при утечке газа - заслонки.

Использование такого технического комплекса позволяет достаточно расширить площадь контроли­руемой территории, оперативно ана­лизировать технические характеристики газоснабжения и управлять ими.

Данная система обеспечивает формирование, запоминание и выдачу на монитор следующей информации: расход Q0 газа на центральном пункте и расходы Q1, Q2, Q3 на трёх контролируемых пунктах газоснабжения, обслуживающих различные районы города, и суммарный по этим трём пунктам расход Q; производит сравнение расходов Q0 и Q, формирует управляющий сигнал для управления соответствующим исполнительным механизмом в случае, если Q0> Q, т.е если на каком-либо контролируемом пункте произошла утечка газа, тем самым временно прекращая подачу газа.

Цикл работы предлагаемой системы – непрерывный.

Вариант исполнения системы изображён в виде следующей схемы.

Система работает следующим образом: осуществляется непрерывный циклический опрос (с периодом около 30 минут) 4-х датчиков-расходомеров, фиксирующих соответственно расход Q0 газа на центральном пункте и расходы Q1, Q2, Q3 на трёх удалённых друг от друга контролируемых пунктах газоснабжения. Далее информация поступает через аналоговый мультиплексор и АЦП в микропроцессор ЭВМ, где происходит обработка с последующей выдачей на монитор информации: определяется суммарный по трём контролируемым пунктам расход Q=Q1+Q2+Q3; производится сравнение расходов Q0 и Q. В случае, если Q0> Q, т.е. если на каком-либо контролируемом пункте произошла утечка газа, формируется управляющий сигнал, который через ЦАП, аналоговый демультиплексор и блок усилителей поступает на соответствующую заслонку для перекрытия ею трубопровода.

1.2 ВЫБОР ЭЛЕМЕНТОВ И РАСЧЁТ НАДЁЖНОСТИ СИСТЕМЫ

В предлагаемой системе используются следующие элементы:

1) В качестве датчиков расхода были подобраны для трубопровода диаметром 300 мм 4 одинаковых тахометрических турбинных расходомера Турбоквант 6624-0-117-5 венгерской фирмы Мерлаб: 3 расходомера для 3-х контролируемых пунктов, где расход газа около 1,8 м3/с»0,7·104 м3/ч и один расходомер для центрального пункта, где расход газа около 5 м3/с»1,8·104 м3/ч. Для данных расходомеров характерны следующие параметры:

-диапазон измеряемых расходов 0,6-2·104 м3/ч,

-диаметр условного прохода 6-500мм – номинальный диаметр отверстия в трубе, предназначенного для прохода газа (может отличаться от действительного),

-приведённая относительная погрешность

0,5%,

-температура контролируемой среды (газа)-150 +250°С,

-давление контролируемой среды (газа) 6,4 – 32МПа,

-температура окружающей среды -50 +70°С,

-постоянная времени 1-10 мс,

-генерируемый электрический сигнал – 0…20мА,

-допускаемая перегрузка -25% по скорости транспортируемой среды в течение 2 ч. в день,

-потери давления на расходомере не превышают 0,025МПа (при 100%-ной нагрузке) и 0,05 МПа – при максимальной перегрузке,

- время наработки на отказ около 103 ч.

Тахометрические турбинные расходомеры, основанные на использовании зависимости скорости вращательного движения тела, помещённого в поток движущейся среды в трубопроводе, от расхода измеряемой среды и генерировании электрического сигнала, пропорционального расходу газа, получили наибольшее распространение в системах инженерного оборудования, особенно при измерении расхода газов (среды с малой плотностью) в установках с автоматизированной системой управления технологическим процессом. Турбинные расходомеры обладают весьма высокой точностью, имеют большие пределы измерений (диапазон измеряемых расходов, как правило, не менее 1:10) и малую инерционность (постоянная времени). К достоинствам турбинных расходомеров относится также удобство использования генерируемых ими электрических сигналов.

2) Для коммутатора аналоговых сигналов используется четырёхканальный аналоговый коммутатор КР590КТ1 со схемами управления (мультиплексор) со следующими характеристиками:

-технология – КМОП (микросхемы на КМОП-транзисторах имеют малую мощность потребления в статическом режиме (единицы микроватт), относительно высокое быстродействие, хорошую помехоустойчивость и достаточно большую нагрузочную способность),

-число каналов - 4,

-напряжение источника питания 9В,

-коммутируемый ток (протекающий по открытому каналу коммутатора) -5мА,

-коммутируемое напряжение (максимально допустимое напряжение, прикладываемое между входом и выходом коммутатора)

15В,

-сопротивление коммутатора в открытом состоянии 100 Ом,

-время переключения коммутатора 0,03мкс,

-напряжения для управления адресными входами 0…0,8 В и 7,7…12 В,

-потребляемые токи на адресных входах 3,5 мА и 3,5 мкА,

-время наработки на отказ около 0,06·106ч.

Аналоговые коммутаторы с внутренними цифровыми схемами управления совместимы с микропроцессорными схемами АЦП и ЦАП.

3) В качестве АЦП используется аналого-цифровой преобразователь К572ПВ1А со следующими параметрами:

-число разрядов - 12,

-входное напряжение 12В,

-потребляемый ток 5мА,

-время преобразования 170мкс,

-опорное напряжение

15В,

-время наработки на отказ около 0,05·106ч.

4) В качестве ПЭВМ используется IBM PC совместимый микроконтроллер 6225, включающий процессор 386SX-25/40, контроллеры, необходимые для сопряжения микроконтроллера с монитором и периферийными устройствами, и имеющий следующие характеристики: 4Мбайт RAM, 166МГц, 4 COM, LPT, FDD,EIDE, 10Base-T Ethernet, слот PC/104, 24 канала дискретного ввода-вывода, 2Мбайт ОЗУ, 1Мбайт флэш-диск, 128 кбайт статическое ОЗУ, 2 порта RS-232 (последовательный стандартный интерфейс, реализующий ввод-вывод информации), встроенная среда разработки и исполнения программ CAMBASIC™, DOS 6.22 в ПЗУ, защита портов от статического разряда, низкое энергопотребление, питание напряжением одного номинала +5В, диапазон рабочих температур от -40° до +85°С, среднее время безотказной работы около3,5 тыс. лет »3,1·107 ч.Максимальная мощность выходного сигнала 30Вт.

5) В качестве ЦАП используется быстродействующий цифро-аналоговый преобразователь К1108ПА2 двоичного кода в напряжение со следующими параметрами при напряжениях источников питания 5В и -6В:

-число разрядов - 8,

-потребляемый ток (от двух источников) ≤100мА,

-абсолютная погрешность полной шкалы

1,5%,

-выходное напряжение 2,5В,

-время установления выходного напряжения 1,5мкс,

-время наработки на отказ около 0,05·106ч.