Смекни!
smekni.com

Синтез алгоритмов согласованного управления пространственным движением беспилотным летательным аппаратом (стр. 1 из 11)

Федеральное агентство по образованию

ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет Приборостроительный

Кафедра Автоматика и управление

ПРОЕКТ ПРОВЕРЕН ДОПУСТИТЬ К ЗАЩИТЕ

Рецензент Заведующий кафедрой

____________________________ ___________________________

“_____” _____________ 2007__ г. “ _____ “ ____________ 2007__ г.

Синтез алгоритмов согласованного управления пространственным движением беспилотным летательным аппаратом

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ДИПЛОМНОМУ ПРОЕКТУ

ЮУрГУ-Д.220200 068.000.ПЗ

Консультанты: Руководитель проекта:

______________________________ _______________________________

______________________________ _______________________________

“ _____ “ ______________ 2007 _ г. Автор проекта

студент группы ПС-269м .

______________________________

______________________________ Пушников А.А. .

“ ____ “ ________________ 2007 _ г.

______________________________ Нормоконтролер

______________________________ ______________________________

“ ____ “ _______________ 2007 _ г. “ _____ “ ______________ 2007 __ г.

Челябинск

2007 г.
Аннотация

Пушников А.А. Синтез алгоритмов согласованного управления пространственным движением беспилотным летательным аппаратом. – Челябинск. ЮурГУ. 2007 – 96 стр.

В данном дипломном проекте представлена математическая модель беспилотного летательного аппарата.В модели учтено влияние ветровых и турбулентных возмущений. Это позволяет уже на этапе моделирования предъявлять требования к аэродинамическим характеристикам летательного аппарата.

В работе рассматриваются алгоритмы управления беспилотным летательным аппаратом на сложных траекториях высшего пилотажа.

Ил. 52, библиогр. 6 назв.


Содержание

Введение. 4

1 Описание математической модели летательного аппарата. 6

1.1 Рулевые органы летательного аппарата и системы координат. 7

1.2 Полная нелинейная модель пространственного движения самолета. 13

1.3 Модель двигателя. 18

1.4 Модель атмосферы и воздушных возмущений. 20

1.5 Модель Земли. 23

1.6 Модель рулевых органов. 25

2 Разработка алгоритмов управления беспилотным летательным аппаратом. 27

2.1 Математическое описание полетного задания. 29

2.1.1 Общие положения. 29

2.1.2 Петля Нестерова. 31

2.2 Синтез управления на траекторном уровне. 36

2.2.1 Управление движением ЛА.. 41

2.2.2 Управление ориентацией ЛА.. 48

2.3 Синтез управления на пилотажном уровне. 52

2.3.1 Настройка регулятора

.53

2.3.2 Настройка регулятора

.55

2.3.3 Настройка регулятора

.59

2.3.4 Настройка регулятора

.63

2.3.5 Настройка регулятора

.68

2.3.5 Настройка регулятора

.. 74

Заключение. 80

Перечень литературы.. 81

Приложение А – Описание параметров модели. 82

Приложение Б - Описание переменных. 86

Приложение В – Исходные map-файлы.. 91

Введение

Считается, что первый беспилотный летательный аппарат это “Воздушная торпеда Сперри”, который совершил свой первый полет 6 марта 1918 года. Этот БПЛА стал предшественником современных управляемых ракет, которые можно считать одноразовыми БПЛА. Первый БПЛА, который можно было использовать повторно был “Queen” компании “British Fairey” вариант самолета “Fairey IIIF”, впервые взлетел в сентябре 1932 года.

После многих десятилетий разработок, современная конфигурация БПЛА определенно не такая как у современных управляемых ракет. Фактически БПЛА находят множественное применение в различных областях. Так американское правительство использует их для разведки на поле боя и запуска ракет. Их военный БПЛА “RQ-1 Predator” по сути, стал революционным шагом в приемах ведения боевых действий. Этот БПЛА оснащенный противотанковыми ракетами “Hellfire”. Уже ведутся работы по разработке беспилотного боевого летательного аппарата "Х-45" взлетевшего в 2002 году.

Гражданским примером применения БПЛА может служить проект "Helios". Этот летательный аппарат (ЛА) отличается высокой надежностью и большой высотой полета, его применение это телекоммуникация. Его рабочая высота превышает 60.000 футов, т.е. он не подвержен влиянию погодных условий и не мешает полетам других воздушных судов и используется, по сути, в качестве стационарного спутника, но без временной задержки. В 2001 году БПЛА, работающий на солнечной энергии, поднялся на рекордную высоту 96.863 фута. Другим хорошим примером БПЛА можно считать “Aerosonde”, который уже достаточно известен своими возможностями в метеорологическом мониторинге и продолжительных перелетах. Это первый БПЛА перелетевший Северный Атлантический океан в 1998 году. На рис. 1 приведена модель “Aerosonde”.

За последние годы по всему миру значительно возрос интерес к беспилотным летательным аппаратам (БПЛА). Все больше и больше университетов выпускающие инженеров для аэрокосмической отрасли создают свои собственные программы по разработке БПЛА для исследований в некоторых уникальных областях, а также для целей обучения.

Целями работы являются:

· Разработка нелинейных алгоритмов согласованного управления БПЛА.

· Отработка алгоритмов на имитационной модели.

Подобный автопилот может использоваться в качестве основного – для решения задач, где качество управление БПЛА человеком малоэффективно, например посадка или фигуры высшего пилотажа.


1 Описание математической модели летательного аппарата

Разработка математической модели движения БПЛА относится к одному из первых этапов процесса создания системы управления полетом. При этом их полнота и точность зависит от назначения разрабатываемых моделей.

В данной работе ЛА рассматривается как динамический объект, непрерывное во времени изменение состояния которого описывается дифференциальными уравнениями. В данной работе будут рассматриваться только жесткие БПЛА самолетного типа. В качестве исследуемого БПЛА взят американский беспилотный БПЛА Aerosonde (рис. 1.1).

Процесс разработки и исследования алгоритмического обеспечения системы управления полетом подразумевает наличие математической модели летательного аппарата, используемой для синтеза законов управления и выбора алгоритмов формирования сигналов управления.

1.1 Рулевые органы летательного аппарата и системы координат

Реализация требуемого движения БПЛА основана на возможности создания управляемых по величине и направлению сил и моментов, действующих на БПЛА. Рассматриваемый самолет обладает органом управления тягой двигателя и аэродинамическими рулями, расположение которых показано на рис.1.2. Принцип действия показанных органов различен, но все они при изменении своего положения так или иначе изменяют направление воздушного потока, что приводит к появлению дополнительных аэродинамических сил.

Элероны, руль направления и руль высоты относятся к традиционным рулевым органам самолета и предназначены для создания управляющих моментов вокруг трех ортогональных осей самолета. Закрылки также относятся к традиционным органам управления и предназначены в основном только для увеличения подъемной силы во время взлета и посадки и в отличие от других рулей отклоняются только вниз.

Далее будут использоваться следующие обозначения угловых отклонений управляющих органов:

- отклонение закрылок;
- отклонение руля высоты;
- дифференциальное отклонение левого и правого элерона;
- отклонение руля направления;
- отклонение ручки управления тягой двигателя, нормированный показатель изменяется от 0 до 1.

При практическом использовании уравнений движения БПЛА их записывают в проекциях на оси выбранных систем координат (СК). В динамике полета получили распространение следующие правые прямоугольные СК [1].

1. Нормальная земная система координат. Начало находится на поверхности земли в любой удобной точке. Оси OoXg (направлена на север) и OoZg (направлена на восток) расположены в горизонтальной плоскости, а ось OoYg направлена вверх (вдоль местной вертикали).

2. Нормальная система координат. Начало находится в центре масс ЛА оси OXg (направлена на север) и OZg (направлена на восток) расположены в горизонтальной плоскости, а ось OYg направлена вверх. В дальнейшем будем полагать, что оси нормальной земной и нормальной СК параллельны. Относительное положение этих СК определяется вектором r между их началами. Проекция вектора r на ось OYg называется геометрической высотой полета.

Рис. 1.3. Нормальная земная и нормальная системы координат