В общем виде эту задачу можно поставить следующим образом: пусть мы наблюдаем m независимых нормально распределенных случайных величин
(1) предполагая, что все они имеют одинаковую дисперсию (эту гипотезу можно проверить с помощью F-критерия). Средние значения случайных величин (2) вообще говоря, различны. Пусть в одинаковых экспериментальных условиях над каждой из переменных (1) производится некоторая серия наблюдений (для простоты ограничимся случаем равночисленных наблюдений, хотя это обстоятельство несущественно для теории). Данные k-й серии пусть будут (k=1,2,…..,m) (3).Опираясь на эти статистические данные, мы хотим проверить гипотезу, согласно которой средние значения (2) равны, т.е. a1=a2=…..=am(4)
Если проверяемая гипотеза, называемая нулевой гипотезой, верна. поставив средние в каждой серии, мы не должны получить ш расхождения между ними; если такое расхождение обнаружено то гипотезу (3) приходится отбросить.
Примером подобной ситуации может служить статистическое исследование урожайности сельскохозяйственной культуры в зависимости от 1 из m сортов почвы при некотором способе ее обработки. Истинное значение урожайности для каждого из m сортов почвы неизвестно, а экспериментально наблюдаемые урожайности (3) в каждом из n экспериментов на этих сортах почвы содержат ошибки, возникающие из-за тех или иных случайных причин. Будет ли одинаковой урожайность на всех сортах почвы, если предположить, что измерения (3) проводились с ‚одинаковой точностью и в одинаковых условиях? Иначе говоря, мы хотим проверить влияние одного фактора сорта почвы — на урожайность .сельскохозяйственной культуры. В другой постановке та же задача возникает, если мы хотим проверить, насколько влияют и влияют ли вообще на плодородие почвы источники загрязнения. В этом случае сорт почвы может меняться и давать разную урожайность в зависимости от удаленности обрабатываемого участка земли от источника загрязнения.
Таблица результатов измерений будет иметь следующий вид (табл. 1):
Результаты измерений урожайности
Номер сорта почвы | Номер эксперимента | ||||
1 | 2 | 3 | … | n | |
1 | x11 | X12 | X13 | … | X1n |
2 | X21 | X22 | X23 | … | X2n |
3 | X31 | X32 | X33 | … | X3n |
… | … | … | … | … | … |
m | Xm1 | Xm2 | Xm3 | … | xnm |
Обозначим через
среднее арифметическое из n наблюдаемых урожайностей на почве первого сорта, через — среднее из урожайностей в почве второго сорта и т. д., так, что , …,Систематические ошибки наблюдений урожайностей на разных почвах неодинаковы, то мы должны ожидать повышенного рассеивания выборочных средних.
Обозначим через
общее среднее арифметическое всех nm измерений так, что .(5)Суммирование по k при постоянном i дает сумму по всем наблюдениям i-той серии (т.е. по i-му сорту почвы). Дальнейшее суммирование по i дает итог по всем сортам почвы. Так как
, то .В то же время
,(6)причем
.Но
, так как представляет собой сумму отклонений наблюдений i-й серии от средней этой же серии и потому S=0. (7)По этому приняв во внимание, что
,(8)мы можем основное тождество (6) записать в следующем виде
, (9) или в сокращенном виде ,(10)где
, ,Таким образом, общая сумма квадратов ‚ распадается на две составные части, первая из которых связана с оценкой дисперсии урожайности между сортами почвы, а вторая — с оценкой дисперсии внутри всех сор почвы.
Предположим теперь, что гипотеза (4) верна, и потому нормальные распределения всех величин
(урожайностей) тождественны. имеют одинаковые среднее значение и дисперсию .Тогда же nm наблюдений можно рассматривать как выборку из одной и той же нормальной совокупности .Можно показать, что при этой гипотезе статистики
, и распределены по закону соответственно с , , степенями свободы, а по тому Q, Q1, Q2 могут быть использованы в этом случае для оценки . Эта оценка может быть поведена с помощью несокращенных характеристик , , .При более детальном изучение показывает, что Q1 и Q2 при нашей гипотезе независимы друг от друга. Заметим, этот вывод справедлив при любых предположениях относительно ai.
Из сказанного вытекает, что критерий
(11) в гипотезе (4) будет следовать F-распределению с и степенями свободы. Выбирая q%-й уровень значимости при известных , , найдем по таблице 20 в приложение соответствующий q% предел так, что P(F>Fq) .Пусть с другой стороны наша гипотеза неверна и средние значения (2) не равны друг другу, но параметр
во всехm совокупностях один и тот же, когда сумма Q2, не изменяющаяся при замене на , имеет, как можно доказать. По-прежнему распределение и степенями свободы, .По-прежнему является несмещенной оценкой для
. В то же время числитель F в (7,14) учитывает систематические расхождения между средними значениями ai, и имеет тенденцию расти и становится тем больше, чем больше отклонения от предполагаемого равенства значений ai. Поэтому правила проверки гипотезы дается в следующем виде: a1=a2=…..=am принимается, если ; в этом случае и несмещенными оценками параметров a и нормально распределенных случайных величин (1).