ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«Приднестровский государственный университет им. Т.Г. Шевченко»
Рыбницкий филиал
Кафедра физики, математики и информатики
Курсовая работа
по дисциплине: «Практикум по решению задач на ЭВМ»
на тему:
«Метод Ньютона для решения нелинейных уравнений»
Выполнила:
студентка III курса;
330й группы
специальности: «Информатика
с доп. специальностью английский
язык».
Нистор А. Г..
Проверила:
преподаватель Панченко Т. А.
г. Рыбница
2008 год
Оглавление
1.1 Обзор существующих методов решения нелинейных уравнений.7
III. Разработка программного продукта.23
Список используемой литературы.. 29
Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, при что выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.
Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а также создания своего собственного программного обеспечения, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования высокого уровня и численные методы .
Численные методы разрабатывают и исследуют, как правило, высококвалифицированные специалисты-математики. Для большинства пользователей главной задачей является понимание основных идей и методов, особенностей и областей применения. Однако, пользователи хотят работать с ЭВМ не только как с высокоинтеллектуальным калькулятором, а еще и как с помощником в повседневной работе, хранилищем информации с быстрым и упорядоченным доступом, а так же с источником и обработчиком графической информации. Все эти функции современной ЭВМ я предполагаю продемонстрировать в настоящей курсовой работе.
Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Данная работа состоит из трёх разделов, заключения и приложения. Первый раздел - теоретический и содержит общие сведения о методе Ньютона. Второй – это практическая часть. Здесь описывается метод Ньютона разобранный на конкретных примерах. Третий посвящён тестированию программы и анализу получившихся результатов. В заключении представлен вывод о проделанной работе.
Цельюданной курсовой работы является программная реализация метода Ньютона для решения нелинейных уравнений.
Для этого необходимо выполнить следующие задачи:
1. Изучить необходимую литературу.
2. Обзорно рассмотреть существующие методы по решению нелинейных уравнений.
3. Изучить метод Ньютона для решения нелинейных уравнений.
4. Рассмотреть решение нелинейных уравнений методом Ньютона на конкретных примерах.
5. Разработать программу для решения нелинейных уравнений методом Ньютона.
6. Проанализировать получившиеся результаты.
Рассмотрим задачу нахождения корней нелинейного уравнения
f(x)=0 (1)
Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.
Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область [a,b], в которой существует корень уравнения или начальное приближение к корню x0. Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.
Существование на найденном отрезке [a,b], по крайней мере, одного корня уравнения (1) следует из условия Больцано:
f(a)*f(b)<0 (2)
При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке [a,b]. Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной
, то можно утверждать о существовании единственного корня на заданном отрезке.При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:
, (3)где
вещественные коэффициенты.а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.
б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов
. Замена х на –х в уравнении (3) позволяет таким же способом оценить число отрицательных корней.На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью
. Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения . Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие: , (4)где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.
Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:
; (5,6)или малости невязки:
(7)Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.
Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:
1)Метод итераций. При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x0 и точность ε. Первое приближение решения x1 находим из выражения x1=f(x0), второе - x2=f(x1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f'(x)|<1.
2)Метод Ньютона. При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0,F(x0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1. В точке (x1,F(x1)) снова строим касательную, находим следующее приближение искомого решения x2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой xi+1=xi-F(xi)\ F’(xi). Условие сходимости метода касательных F(x0)∙F''(x)>0, и др.
3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле Ск=ак+вк/2.
Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (ак)* f (вк)<0.