Смекни!
smekni.com

Применение MS Excel для решения статистических задач (стр. 2 из 6)

Выборочный коэффициент детерминации для фактора А

показывает, что 83 процента общей выборочной вариации урожайности пшеницы связано с влиянием вида удобрения.

Расчётное значение F- критерия фактора В (способ химической обработки)
, а критическая область образуется правосторонним интервалом (2,90; +∞) . Так как
попадает вкритическую область, то гипотезу
отвергаем, т.е. считаем, что способ химической обработки почвы также влияет на урожайность пшеницы.

Выборочный коэффициент детерминации для фактора В

показывает, что только около 3 процентов общей выборочной вариации урожайности пшеницы связано с влиянием способа химической обработки почвы.

Значимость фактора взаимодействия
попадает в критический интервал (2,19;+∞) и указывает на то, что эффективность различных видов удобрения варьируется при различных способах химической обработки почвы. [6]

Двухфакторный дисперсионный анализ без повторения.

Представляет собой двухфакторный анализ дисперсии, не включающий более одной выборки на группу. Используется для проверки гипотезы о том, что средние значения двух или нескольких выборок одинаковы (выборки принадлежат одной и той же генеральной совокупности). Этот метод распространяется также на тесты для двух средних, такие как t-критерий.

Корреляционный и ковариационный анализ.

Ковариация выражает степень статистической зависимости между двумя множествами данных и определяется из следующего соотношения:

где:

X, Y - множества значений случайных величин размерности m;

M(X) - математическое ожидание случайной величины Х;

M(Y) - математическое ожидание случайной величины Y.

Как следует из формулы, положительная ковариация наблюдается в том случае, когда большим значениям случайной величины Х соответствуют большие значения случайной величины Y, т.е. между ними существует тесная прямая взаимосвязь. Соответственно отрицательная ковариация будет иметь место при соответствии малым значениям случайной величины Х больших значений случайной величины Y. При слабо выраженной зависимости значение показателя ковариации близко к 0.

Ковариация зависит от единиц измерения исследуемых величин, что ограничивает ее применение на практике. Более удобным для использования в анализе является производный от нее показатель - коэффициент корреляции R, вычисляемый по формуле:

Коэффициент корреляции обладает теми же свойствами, что и ковариация, однако является безразмерной величиной и принимает значения от -1 (характеризует линейную обратную взаимосвязь) до +1 (характеризует линейную прямую взаимосвязь). Для независимых случайных величин значение коэффициента корреляции близко к 0.

Определение количественных характеристик для оценки тесноты взаимосвязи между случайными величинами в ППП EXCEL может быть осуществлено двумя способами:

· с помощью статистических функций КОВАР и КОРРЕЛ ;

· с помощью специальных инструментов статистического анализа.

Если число исследуемых переменных больше 2, более удобным является использование инструментов анализа.

Инструмент анализа данных "Корреляция"

1. Выберите в главном меню тему "Сервис" пункт "Анализ данных". Результатом выполнения этих действий будет появление диалогового окна "Анализ данных", содержащего список инструментов анализа.

2. Выберите из списка "Инструменты анализа" пункт "Корреляция" и нажмите кнопку "ОК" (рис.1). Результатом будет появление окна диалога инструмента "Корреляция".

3. Заполните поля диалогового окна, как показано на рис. 2 и нажмите кнопку "ОК".

Вид полученной ЭТ после выполнения элементарных операций форматирования приведен на рис. 3.

Рис. 1 Список инструментов анализа (выбор пункта "Корреляция")

Рис.2. Заполнение окна диалога инструмента "Корреляция"

Рис. 3 Результаты корреляционного анализа

Результаты корреляционного анализа представлены в ЭТ в виде квадратной матрицы, заполненной только наполовину, поскольку значение коэффициента корреляции между двумя случайными величинами не зависит от порядка их обработки. Нетрудно заметить, что эта матрица симметрична относительно главной диагонали, элементы которой равны 1, так как каждая переменная коррелирует сама с собой.

Полезность проведения последующего статистического анализа результатов имитационного эксперимента заключается также в том, что во многих случаях он позволяет выявить некорректности в исходных данных, либо даже ошибки в постановке задачи. Следует отметить, что близкие к нулевым значения коэффициента корреляции R указывают на отсутствие линейной связи между исследуемыми переменными, но не исключают возможности нелинейной зависимости. Кроме того, высокая корреляция не обязательно всегда означает наличие причинной связи, так как две исследуемые переменные могут зависеть от значений третьей. [12]

Для проверки гипотезы о нормальном распределении случайной величины применяются специальные статистические критерии: Колмогорова-Смирнова,

. В целом ППП EXCEL позволяет быстро и эффективно осуществить расчет требуемого критерия и провести статистическую оценку гипотез.

Однако в простейшем случае для этих целей можно использовать такие характеристики распределения, как асимметрия и эксцесс. Для вычисления коэффициента асимметрии и эксцесса в EXCEL реализованы специальные статистические функции - СКОС () и ЭКСЦЕСС(). [3]

1.3. Инструмент анализа данных "Описательная статистика"

Чем больше характеристик распределения случайной величины нам известно, тем точнее мы можем судить об описываемых ею процессов. Инструмент "Описательная статистика" автоматически вычисляет наиболее широко используемые в практическом анализе характеристики распределений. При этом значения могут быть определены сразу для нескольких исследуемых переменных.

Определим параметры описательной статистики. Для этого необходимо выполнить следующие шаги.

1. Выберите в главном меню тему "Сервис" пункт "Анализ данных". Результатом выполнения этих действий будет появление диалогового окна "Анализ данных", содержащего список инструментов анализа.