Смекни!
smekni.com

Расчет оптимального кода по методике Шеннона Фано (стр. 4 из 4)

textcolor(10); writeln(' C =',C:7:4,' бит/сек');

textcolor(11); writeln;

Writeln('1.3 Избыточность сообщений:');

textcolor(10); writeln(' D =',D:7:4);

writeln;

TextColor(11);

write(' Нажмите любую клавишу для вывода таблицы резултатов построения.');

readkey;

clrScr;

vivod;

readkey;

end.
Заключение:

В моей курсовой работе я использовал теоретический материал и разработанную на языке (высокого уровня) Turbo Pascal программу. Мною было рассчитано количество информации на символ сообщения, составленного из алфавита, состоящего из 24 символа, для двух случаев:

1] если символы алфавита встречаются с равными вероятностями;

2] если вероятности не равны.

Также я определил количество недогрузки символов во втором случае, вычислил количество информации на символ сообщения и скорость передачи сообщений, составленных из таких символов, нашел избыточность сообщений, составленных из данного алфавита. Построил оптимальный код сообщения, применяя методику Шеннона-Фано: при помощи последовательного деления множества вероятностей на группы по принципу равенства сумм вероятностей я составил в соответствие каждому символу наиболее оптимальную двоичную комбинацию. Таким образом, был получен оптимальный двоичный код для алфавита из 31 символа.

В результате выполнения работы были получены следующие результаты:

· количество информации на символ для равновероятного алфавита – 4,585 бит/сим;

· количество информации на символ для неравновероятного алфавита - 2,6409 бит/сим;

· недогруженность символов – 1,9441 бит/сим;

· скорость передачи информации – 0,1244 бит/сек;

· избыточность сообщения – 0,4240;

· построен следующий оптимальный код:


Символ Вероятность появления Код Число знаков
p[ 1] 0.0417 0
p[ 2] 0.0018 111
p[ 3] 0.0020 110
p[ 4] 0.0022 1000
p[ 5] 0.0024 10011
p[ 6] 0.0026 10010
p[ 7] 0.0029 101111
p[ 8] 0.0033 1011100
p[ 9] 0.0037 101101
p[10] 0.0042 101101
p[11] 0.0048 1010011
p[12] 0.0055 10100100
p[13] 0.0064 1010001
p[14] 0.0076 1010001
p[15] 0.0091 10101111
p[16] 0.0111 101011100
p[17] 0,0139 10101101
p[18] 0,0179 10101101
p[19] 0,0238 10101010
p[20] 0,0333 101010111
p[21] 0,0500 101010110
p[22] 0,0833 10101000
p[23] 0,1667 101010011
p[24] 0,5000 101010010

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:

1. Бауэр Ф. Информатика, М. 1992.

2. Колесник В.Д. Курс теории информации, М. 1982.

3. ФароновВ. В. Turbo Pascal 7.0. Учебное пособие, М. 2000.

4. Цымбаль В.П. Задачник по теории информации и кодированию, Киев. 1976.

5. Марченко А.И. Программирование в среде TurboPascal 7.0.