Смекни!
smekni.com

Расчет информационных характеристик источников сообщений сигналов и кодов (стр. 4 из 4)

Ответ: потенциальный минимум

; среднее количество символов, приходящихся на одно сообщение
; эффективность кода
.

4. Согласование дискретного источника с дискретным каналом с шумом. Помехоустойчивое кодирование

4.1 Задача № 4.24

Определить избыточного оптимального по Шеннону кода (существование которого утверждается теоремой для канала с шумом) с объемом алфавита М =3 и средним количеством символов, переданных в единицу времени – Vk, предназначенного для безошибочной передачи информации по каналу с пропускной способностью С. Найти минимально возможную избыточность оптимального кода для симметричного канала с вероятностью ошибки Р = 0,1.

Решение:

В соответствии с (1.12) лекции, избыточность источника дискретного сообщения с объемом алфавита М называется величина

,

Причем, если ввести понятие производительности

,

То величину

можно переписать в виде:

.

Так как передача информации предполагает, что безошибочное кодирование должно быть однозначным, т.е. потери информации при кодировании должны отсутствовать. Это значит, что производительность канала должна быть равна производительности источника сообщения, т.е.

.

В соответствии с условием (2.15) теоремы Шеннона

или для оптимального кода

, где
.

Поэтому, окончательная формула для вычисления избыточности будет выглядеть:

.

В соответствии с §1.6 лекции, среднее количество символов, передающихся в единицу времени будем определять по формуле (1.27.а):

Подставляя полученное значение в выведенную формулу избыточности, получим:


Ответ: минимальная возможнаяизбыточность оптимального кода для симметричного канала с вероятностью ошибки Р = 0,1 и объемом алфавита М = 3 будет равна

.

4.2 Задача № 4.54

Построить производящую матрицу G линейного двоичного блочного кода, способного исправлять одиночную ошибку при передаче дискретных сообщений источника, представляющих собой последовательность десятичных цифр из диапазона 0 … M-1 (с объёмом алфавита M = 1981). Пользуясь разработанной матрицей G, сформировать кодовую комбинацию для сообщения i (i = 1569). Построить соответствующую производящей матрице G проверочную матрицу H и с её помощью сформировать кодовую комбинацию для сообщения i. По виду синдрома найти и исправить ошибку в принимаемой кодовой комбинации (дополнительно заданной преподавателем). Определить, является ли разработанный код кодом Хэмминга.

Решение:

Производящая матрица G линейного двоичного блочного кода имеет размерность (n; k). Так как код является двоичным, то

.

Отсюда находим k:

Матрица G линейного двоичного кода состоит из двух матриц:

.

Построим матрицу I: I – это единичная матрица, размерности (k; k), при k = 11

Построим матрицу П: П – имеет размерность (k; n-k), k – число строк, а n – число столбцов.

Матрицу П будем строить по определенным правилам:

1. так как код должен исправлять единичную ошибку, получим, что исправная способность будет равна единице, т.е.

.

В одной стоке матрицы должно быть не менее d – 1 единиц. Найдем d как


2. все строки должны быть разными;

3. число элементов в стоке должно быть минимально.

Используя правила построения, получим матрицу П:

n – k = 4

k = 11

n = 15

После построения вспомогательных матриц, можно построить матрицу G:


Проверочная матрица Н имеет размерность (n-k; k) и представляет собой транспонированную матрицу П:

Пользуясь разработанной матрицей G, сформируем кодовую комбинацию для сообщения – i (i =1569). Переведем ее из десятичного в двоичный вид: 1569

11000100001.

Разрешенная комбинация

Получится кодовая комбинация Vi


Полученная комбинация состоит из информационных и проверочных разрядов:

.

Каждый проверочный разряд представляет собой сумму информационных разрядов, взятых с некоторым коэффициентом

.

берется из матрицы Н.

j = 1:

j = 2:

j =3:

j = 4:

Для того, что бы найти ошибку, надо найти синдром. Правило нахождения синдрома:

1. по информационным разрядам задается комбинация, определяющая проверочные разряды;

2. складываем по модулю два полученные проверочные разряды с теми, которые имеют место в принятой комбинации. Результатом является синдром.

Для того, что бы с помощью синдрома найти ошибку, найдем матрицу Нпроверочную:

,

где I – единичная матрица, размерности (n-k; n-k)

Попробуем найти ошибку с помощью синдрома: пусть получена следующая комбинация – [101000001111100]. Воспользуемся правилом нахождения синдрома:

1. по информационным разрядам определяем проверочные разряды исходного кода – [1001];

2. складываем по модулю два полученные проверочные разряды и те, которые имеют место в принятой комбинации:

[1001]

[1100] = [0101].

Теперь строим проверочную матрицу Нпроверочную:

Найдем в Нпроверочнойстолбец, совпадающий с комбинацией синдрома. Номер этого столбца указывает на номер столбца в принятой комбинации, в которой допущена ошибка. В нашем случае комбинация синдрома совпадает с 2 столбцом Нпроверочную.

Для исправления этой ошибки надо инвертировать значение этого разряда. Тогда у нас получается – [111000001111100].

Код Хемминга, это код (n; k), который определяется:

Полученная мной матрица имеет размерность

. Она является кодом Хемминга.

Заключение

В результате выполнения курсовой работы были прорешены задачи по следующим темам: расчет информационных характеристик источников дискретных сообщений, расчет информационных характеристик дискретного канала, согласование дискретного источника с дискретным каналом без шума, эффективное кодирование, согласование дискретного источника с дискретным каналом с шумом, помехоустойчивое кодирование. Полученные при этом знания, как следует ожидать, будут успешно использоваться в дальнейшем.

Решенные задачи могут являться простым примером применения знания основ теории информации для практических целей.

В результате выполнения работы все требования задания были выполнены.


Список использованных источников

1. Прикладная теория информации: Учебн. Для студ. ВУЗов по спец. «Автоматизированные системы обработки информации и управления». – М.: Высш. шк., 1989. – 320с.:ил.