Смекни!
smekni.com

Дискретно-аналоговое представление (стр. 1 из 4)

Содержание

Введение

1. Дискретно-аналоговое представление регулярными выборками

2. Физическая трактовка процессов интерполяции сигналов

3. Задачи идеальной интерполяции

4. Интерполяция алгебраическими полиномами

5. Определение частоты опроса

Заключение

Список литературы


Введение

В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.

Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации.

Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.

1. Дискретно-аналоговое представление регулярными выборками

При дискретно-аналоговом представлении сообщение на интервале времени T описывается вектором

, (1)

где

- координаты.

Если шкала каждой координаты непрерывная, то это представление называется дискретно-аналоговым, а если шкала квантованная, то представление дискретно-квантованное, т.е. цифровое.

Дискретно-аналоговое представление сообщений может быть реализовано различными способами в зависимости от выбора системы координат. Наибольшее применение в РСПИ получили представления, у которых в качестве координат

сообщения используется текущее значение сигнала в фиксированные моменты времени.

(2)

Координаты

называются выборками или отсчетами, а моменты времени
- точками опроса.

При представлении регулярными выборками расстояние между соседними точками опроса одинаково и равно

.

, (3)

где

- период опроса,
- частота опроса.

Частота опроса

является важнейшим параметром, который надо выбирать при представлении сообщения регулярными выборками.

Процесс формирования выборок в этом случае изображен на рисунке 1:

Рисунок 1

Выбор частоты опроса

зависит от способа восстановления исходного сообщения на приемном конце. Восстановление непрерывной функции по её выборкам называется интерполяцией.

Рассмотрим случай, когда потребителю необходимо восстановить на приёмной стороне функцию

. Реально при восстановлении функции
может быть получена только её оценка
. Для доказательства этого утверждения представим интерполяционную обработку в следующем виде:

, (4)

где

- интерполирующая (восстанавливающая, синтезирующая) функция. Функция

, (5)

т.е.

есть функция с началом отсчета в точкемер выборки первичного сигнала. Суммирование в выражении (4) ведется по всем выборкам, участвующим в обработке. Определение вида функции
составляет сущность задачи выбора способа интерполяционной обработки.

На точность функции восстановления функции

влияют следующие факторы:

-шумы интерполяции;

-шумы радиолинии;

-погрешности системы.

В дальнейшем будем учитывать только ошибку за счет интерполяции. Т.е. выборки будут считаться точными, а шумы отсутствующими. Тогда выражение для оценки первичного сигнала будет иметь следующий вид:

. (6)

Ошибка интерполяционной обработки в этом случае равна:

. (7)

При этом оценка

должна быть получена на некотором интервале интерполяции
с учетом выборок, расположенных на конечном интервале обработки
. Интервал обработки
должен последовательно перемещаться в пределах интервала наблюдения
(рисунок 2).

Рисунок 2

Таким образом, функция

должна быть восстановлена для всех значений времени, лежащих внутри интервала интерполяции
, путем использования выборок в моменты времени
.
Это возможно потому, что существует корреляционная зависимость между значением первичного сигнала
, моментами времени
и
. Интерполяция белого шума невозможна, т.к. его корреляционная функция есть дельта – функция.

Теоретически необходимо учитывать все отсчеты

на интервале наблюдения
, т.е. полагать
=
. Но при этом результаты интерполяции могут быть получены спустя время
, и для реализации требуется устройство с большой памятью. С удалением точки опроса от интервала интерполяции
уменьшаются корреляционные связи и их учет дает малый вклад в ошибку интерполяции. Поэтому имеют смысл учитывать только те отсчеты, выборки которых коррелированны с функцией
на интервале интерполяции
, с коэффициентами корреляции К(τ) = 0.05 – 0.2. Конкретные значения К(τ) определяются требованиями к точности интерполяции.