Введение
1. Дискретно-аналоговое представление регулярными выборками
2. Физическая трактовка процессов интерполяции сигналов
3. Задачи идеальной интерполяции
4. Интерполяция алгебраическими полиномами
5. Определение частоты опроса
Заключение
Список литературы
В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.
Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.
Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации.
Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.
1. Дискретно-аналоговое представление регулярными выборками
При дискретно-аналоговом представлении сообщение на интервале времени T описывается вектором
, (1)где
- координаты.Если шкала каждой координаты непрерывная, то это представление называется дискретно-аналоговым, а если шкала квантованная, то представление дискретно-квантованное, т.е. цифровое.
Дискретно-аналоговое представление сообщений может быть реализовано различными способами в зависимости от выбора системы координат. Наибольшее применение в РСПИ получили представления, у которых в качестве координат
сообщения используется текущее значение сигнала в фиксированные моменты времени. (2)Координаты
называются выборками или отсчетами, а моменты времени - точками опроса.При представлении регулярными выборками расстояние между соседними точками опроса одинаково и равно
.где
- период опроса, - частота опроса.Частота опроса
является важнейшим параметром, который надо выбирать при представлении сообщения регулярными выборками.Процесс формирования выборок в этом случае изображен на рисунке 1:
Рисунок 1
Выбор частоты опроса
зависит от способа восстановления исходного сообщения на приемном конце. Восстановление непрерывной функции по её выборкам называется интерполяцией.Рассмотрим случай, когда потребителю необходимо восстановить на приёмной стороне функцию
. Реально при восстановлении функции может быть получена только её оценка . Для доказательства этого утверждения представим интерполяционную обработку в следующем виде: , (4)где
- интерполирующая (восстанавливающая, синтезирующая) функция. Функция , (5)т.е.
есть функция с началом отсчета в точкемер выборки первичного сигнала. Суммирование в выражении (4) ведется по всем выборкам, участвующим в обработке. Определение вида функции составляет сущность задачи выбора способа интерполяционной обработки.На точность функции восстановления функции
влияют следующие факторы:-шумы интерполяции;
-шумы радиолинии;
-погрешности системы.
В дальнейшем будем учитывать только ошибку за счет интерполяции. Т.е. выборки будут считаться точными, а шумы отсутствующими. Тогда выражение для оценки первичного сигнала будет иметь следующий вид:
. (6)Ошибка интерполяционной обработки в этом случае равна:
. (7)При этом оценка
должна быть получена на некотором интервале интерполяции с учетом выборок, расположенных на конечном интервале обработки . Интервал обработки должен последовательно перемещаться в пределах интервала наблюдения (рисунок 2).Рисунок 2
Таким образом, функция
должна быть восстановлена для всех значений времени, лежащих внутри интервала интерполяции , путем использования выборок в моменты времени . Это возможно потому, что существует корреляционная зависимость между значением первичного сигнала , моментами времени и . Интерполяция белого шума невозможна, т.к. его корреляционная функция есть дельта – функция.Теоретически необходимо учитывать все отсчеты
на интервале наблюдения , т.е. полагать = . Но при этом результаты интерполяции могут быть получены спустя время , и для реализации требуется устройство с большой памятью. С удалением точки опроса от интервала интерполяции уменьшаются корреляционные связи и их учет дает малый вклад в ошибку интерполяции. Поэтому имеют смысл учитывать только те отсчеты, выборки которых коррелированны с функцией на интервале интерполяции , с коэффициентами корреляции К(τ) = 0.05 – 0.2. Конкретные значения К(τ) определяются требованиями к точности интерполяции.