Смекни!
smekni.com

Язык программирования C (стр. 3 из 5)

Ключевым понятием С++ является класс. Класс - это определяемый пользователем тип. Классы обеспечивают упрятывание данных, их инициализацию, неявное преобразование пользовательских типов, динамическое задание типов, контролируемое пользователем управление памятью и средства для перегрузки операций. В языке С++ концепции контроля типов и модульного построения программ реализованы более полно, чем в С. Кроме того, С++ содержит усовершенствования, прямо с классами не связанные: символические константы, функции-подстановки, стандартные значения параметров функций, перегрузка имен функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены все возможности С эффективной работы с основными объектами, отражающими аппаратную "реальность" (разряды, байты, слова, адреса и т.д.). Это позволяет достаточно эффективно реализовывать пользовательские типы.

Объектно-ориентированное программирование - это метод программирования, способ написания "хороших" программ для множества задач. Если этот термин имеет какой-то смысл, то он должен подразумевать: такой язык программирования, который предоставляет хорошие возможности для объектно-ориентированного стиля программирования.

Нельзя сказать, что один язык лучше другого только потому, что в нем есть возможности, которые в другом отсутствуют. Часто бывает как раз наоборот. Здесь более важно не то, какими возможностями обладает язык, а то, насколько имеющиеся в нем возможности поддерживают избранный стиль программирования для определенного круга задач.

Язык С++ проектировался для поддержки абстракции данных и объектно-ориентированного программирования в добавление к традиционному стилю С. Впрочем, это не значит, что язык требует какого-то одного стиля программирования от всех пользователей.

ПАРАДИГМЫ ПРОГРАММИРОВАНИЯ:

Процедурное программирование

Первоначальной (и, возможно, наиболее используемой) парадигмой программирования было:

Определите, какие процедуры вам нужны; используйте лучшие из известных вам алгоритмов!

Ударение делалось на обработку данных с помощью алгоритма, производящего нужные вычисления. Для поддержки этой парадигмы языки предоставляли механизм передачи параметров и получения результатов функций. Литература, отражающая такой подход, заполнена рассуждениями о способах передачи параметров, о том, как различать параметры разных типов, о различных видах функций (процедуры, подпрограммы, макрокоманды, ...) и т.д. Первым процедурным языком был Фортран, а Алгол60, Алгол68, Паскаль и С продолжили это направление.

Модульное программирование

Со временем при в проектировании программ акцент сместился с организации процедур на организацию структур данных. Помимо всего прочего это вызвано и ростом размеров программ. Модулем обычно называют совокупность связанных процедур и тех данных, которыми они управляют.

Парадигма программирования приобрела вид:

Определите, какие модули нужны; поделите программу так, чтобы данные были скрыты в этих модулях

Эта парадигма известна также как "принцип сокрытия данных". Если в языке нет возможности сгруппировать связанные процедуры вместе с данными, то он плохо поддерживает модульный стиль программирования. Теперь метод написания "хороших" процедур применяется для отдельных процедур модуля.

Поскольку данные есть единственная вещь, которую хотят скрывать, понятие упрятывания данных тривиально расширяется до понятия упрятывания информации, т.е. имен переменных, констант, функций и типов, которые тоже могут быть локальными в модуле. Хотя С++ и не предназначался специально для поддержки модульного программирования, классы поддерживают концепцию модульности ($$5.4.3 и $$5.4.4). Помимо этого С++, естественно, имеет уже продемонстрированные возможности модульности, которые есть в С, т.е. представление модуля как отдельной единицы трансляции.

Абстракция данных

Модульное программирование предполагает группировку всех данных одного типа вокруг одного модуля, управляющего этим типом.

Конечно такое решение намного лучше, чем хаос, свойственный традиционным, неструктурированным решениям, но моделируемые таким способом типы совершенно очевидно отличаются от "настоящих", встроенных. Каждый управляющий типом модуль должен определять свой собственный алгоритм создания "переменных" этого типа. Не существует универсальных правил присваивания идентификаторов, обозначающих объекты такого типа. У "переменных" таких типов не существует имен, которые были бы известны транслятору или другим системным программам, и эти "переменные" не подчиняются обычным правилам областей видимости и передачи параметров.

Тип, реализуемый управляющим им модулем, по многим важным аспектам существенно отличается от встроенных типов. Такие типы не получают той поддержки со стороны транслятора (разного вида контроль), которая обеспечивается для встроенных типов. Проблема здесь в том, что программа формулируется в терминах небольших (одно-два слова) дескрипторов объектов, а не в терминах самих объектов. Это означает, что транслятор не сможет отловить глупые, очевидные ошибки.

Иными словами, концепция модульности, поддерживающая парадигму упрятывания данных, не запрещает такой стиль программирования, но и не способствует ему.

В языках Ада, Clu, С++ и подобных им эта трудность преодолевается благодаря тому, что пользователю разрешается определять свои типы, которые трактуются в языке практически так же, как встроенные. Такие типы обычно называют абстрактными типами данных, хотя лучше, пожалуй, их называть просто пользовательскими. Более строгим определением абстрактных типов данных было бы их математическое определение. Если бы удалось его дать, то, что мы называем в программировании типами, было бы конкретным представлением действительно абстрактных сущностей.

Парадигму же программирования можно выразить теперь так:

Определите, какие типы вам нужны; предоставьте полный набор операций для каждого типа.

Если нет необходимости в разных объектах одного типа, то стиль программирования, суть которого сводится к упрятыванию данных, и следование которому обеспечивается с помощью концепции модульности, вполне адекватен этой парадигме.

Большинство модулей (хотя и не все) лучше определять как пользовательские типы.

Пределы абстракции данных

Абстрактный тип данных определяется как некий "черный ящик". После своего определения он по сути никак не взаимодействует с программой. Его никак нельзя приспособить для новых целей, не меняя определения. В этом смысле это негибкое решение.

Объектно-ориентированное программирование

Объектно-ориентированное программирование наилучшим образом предоставляет технологию управления элементами любой сложности, создавая условия для многократного использования программных компонентов и объединения данных с методами их обработки.

Суть объектно-ориентированного программирования заключается в использовании концепции “объектов” , то есть, скорее, образов, чем данных.

Руководящая идея этого подхода заключается в стремлении связать данные с обрабатывающими эти данные методами в единое целое - объект. Объекты имеют характеристики и возможности.

Фактически объектно-ориентированное программирование можно рассматривать как модульное программирование нового уровня, когда вместо во многом случайного, механического объединения процедур и данных акцент делается на их смысловую связь.

Объектная модель способна одинаково хорошо описать как элементы управления графического интерфейса (типа кнопок и раскрывающихся списков), так и реальные объекты(велосипед, самолёт, кота и воду). Таким образом, задача объектно-ориентированного программирования состоит в том, чтобы правильно представить эти объекты на языке программирования.

В языке C++ полностью поддерживаются принципы объектно-ориентированного программирования, включая три кита, на которых оно состоит: инкапсуляцию, наследование и полиморфизм.

Инкапсуляция

Совмещение структур данных с функциями (методами), предназначенными для манипулирования этими данными. Инкапсуляция достигается путём введения класса нового механизма структурирования и типизации данных.

Наследование

Создание новых, производных классов, которые наследуют данные и функции от одного или нескольких ранее определённых базовых классов. При этом возможно переопределение или добавление новых данных и методов. В результате создаётся иерархия классов.

Полиморфизм

Присвоение методу единого имени или идентификатора в рамках иерархии классов таким образом, чтобы любой класс в иерархии имел возможность по-своему выполнять связанные с этим методом действия.

Одновременно с появлением и детализацией концепции появились и основанные на ней языки программирования. Одним из первых явился алгоритмический язык Modula 2. Язык программирования TurboPascal, разработанный фирмой Borland, начиная с версии 5.5 стал объектно-ориентированным. Но наиболее последовательно воплощение концепция объектно-ориентированного программирования нашла в алгоритмическом языке C++.

Пусть, например, нужно определить для графической системы тип shape (фигура). Проблема состоит в том, что мы не различаем общие свойства фигур (например, фигура имеет цвет, ее можно нарисовать и т.д.) и свойства конкретной фигуры (например, окружность - это такая фигура, которая имеет радиус, она изображается с помощью функции, рисующей дуги и т.д.).

Суть объектно-ориентированного программирования в том, что оно позволяет выражать эти различия и использует их. Язык, который имеет конструкции для выражения и использования подобных различий, поддерживает объектно-ориентированное программирование. Все другие языки не поддерживают его. Здесь основную роль играет механизм наследования, заимствованный из языка Симула.