Федеральное государственное образовательное учреждение высшего профессионального образования
«южный федеральный университет»
Экономический факультет
Кафедра «Прикладной информатики в экономике»
Курсовая работа
на тему:
Применение нейронных сетей для формализации процессов управления. Сети Хопфилда
Выполнил: студент 4 курса
11 группы
Жданова Екатерина
Проверил: д.э.н. профессор
Стрельцова Е.Д.
Ростов-на-Дону
2009
Содержание
Введение
1. Применение нейрокомпьютеров в финансовой деятельности
1.1 Прогнозирование временных рядов на основе нейросетевых методов обработки
1.2 Страховая деятельность банков
1.3 Прогнозирование банкротств на основе нейросетевой системы распознавания
1.4 Определение курсов облигаций и акций предприятий с целью вложения средств в эти предприятия
1.5 Применение нейронных сетей к задачам анализа биржевой деятельности
1.6 Прогнозирование экономической эффективности финансирования экономических и инновационных проектов
1.7 Предсказание результатов займов
2. Пример применения нейронной сети
3. Применение нейрокомпьютеров на российском финансовом рынке
4. Применение нейронных сетей в задачах прогнозирования
5. Использование аппарата нейронных сетей для создания модели оценки и управления рисками.
6. Предсказание рисков банкротств
7. Сравнительный анализ финансового состояния фирм
7.1.1. Постановка задачи
7.1.2. Данные о российских банках
7.1.3. Нелинейное сжатие информации - карты Кохонена
7.1.4. Раскраски карты Кохонена
8. Модель нейронной сети для предсказания финансовой несостоятельности организации
9. Нейронная сеть Хопфилда
10. Пример применения сети Хопфилда
Заключение
Список используемой литературы
Введение
Уже сегодня искусственные нейронные сети используются во многих областях, но прежде чем их можно будет применять там, где на карту поставлены человеческие жизни или значительные материальные ресурсы, должны быть решены важные вопросы, касающиеся надежности их работы. Поэтому уровень допустимых ошибок следует определять исходя из природы самой задачи. Некоторые проблемы с анализом вопросов надежности возникают из-за допущения полной безошибочности компьютеров, тогда как искусственные нейронные сети могут быть неточны даже при их правильном функционировании. На самом же деле компьютеры, как и люди, тоже могут ошибаться. Первые — в силу различных технических проблем или ошибок в программах, вторые — из-за невнимательности, усталости или непрофессионализма. Следовательно, для особо критических задач необходимо, чтобы эти системы дублировали и страховали друг друга. А это значит, при решении таких задач нейронные сети должны выступать не в качестве единственных средств, а в качестве дополнительных, предупреждающих особые ситуации или берущих на себя управление, когда проблема не решается стандартным образом и какие-либо задержки могут привести к катастрофе.
Другая трудность использования нейронных сетей состоит в том, что традиционные нейронные сети неспособны объяснить, каким образом они решают задачу. Внутреннее представление результатов обучения зачастую настолько сложно, что его невозможно проанализировать, за исключением некоторых простейших случаев, обычно не представляющих интереса.
В последнее время предпринимаются активные попытки объединения искусственных нейронных сетей и экспертных систем. В такой системе искусственная нейронная сеть может реагировать на большинство относительно простых случаев, а все остальные передаются для рассмотрения экспертной системе. В результате сложные случаи принимаются на более высоком уровне, при этом, возможно, со сбором дополнительных данных или даже с привлечением экспертов.
Нейросетевые прикладные пакеты, разрабатываемые рядом компаний, позволяют пользователям работать с разными видами нейронных сетей и с различными способами их обучения. Они могут быть как специализированными (например, для предсказания курса акций), так и достаточно универсальными.
Области применения нейронных сетей весьма разнообразны — это распознавание текста и речи, семантический поиск, экспертные системы и системы поддержки принятия решений, предсказание курсов акций, системы безопасности, анализ текстов. В данной курсовой работе рассматривается несколько особенно ярких и интересных примеров использования нейронных сетей в разных областях.
При создании курсовой работы ставилась цель: изучение применения нейронных сетей для формализации процессов управления, рассмотрение непосредственных примеров.
Для достижения поставленной цели в работе решены следующие задачи:
1. Выполнение обзора применения нейронных сетей
2. Изучение различных моделей нейронных сетей
3. Изучение карт Кохонена в финансовой сфере
4. Рассмотрение нейронной сети Хопфилда, её построения, структуры, свойств, особенностей и непосредственного применения
1. Применение нейрокомпьютеров в финансовой деятельности
Одним из наиболее интересных приложений нейронных сетей в последние годы стали именно задачи финансовой деятельности. На рынке появляется огромное количество как универсальных нейропакетов, которые зачастую используются для решения задач технического анализа, так и специализированных экспертных систем и нейропакетов для решения многих других, зачастую более сложных и трудно формализуемых задач из финансовой области. В настоящее время имеет место широкое появление на отечественном рынке компьютеров и программного обеспечения нейропакетов и нейрокомпьютеров, предназначенных для решения финансовых задач. Те банки и крупные финансовые организации, которые уже используют нейронные сети для решения своих задач, понимают, насколько эффективным средством могут быть нейронные сети для задач с хорошей статистической базой, например при наличии достаточно длинных временных рядов, в том числе и многомерных. При этом в качестве потребителя такой информации выступают либо люди, хорошо знающие потенциальные возможности нейронных сетей, либо решающие такие задачи традиционными методами и вынужденные искать другие, более эффективные способы решения задач.
Основные задачи, решаемые с помощью нейрокомпьютеров:
1. Прогнозирование временных рядов на основе нейросетевых методов обработки (валютный курс, спрос и котировки акций, фьючерсные контракты и др.)
2. Страховая деятельность банков.
3. Прогнозирование банкротств на основе нейросетевой системы распознавания.
4. Определение курсов облигаций и акций предприятий с целью вложения средств в эти предприятия.
5. Применение нейронных сетей к задачам биржевой деятельности
6. Прогнозирование экономической эффективности финансирования экономических и инновационных проектов
7. Предсказание результатов займов.
Приведем краткое пояснение каждого из основных приложений
1.1 Прогнозирование временных рядов на основе нейросетевых методов обработки
- Прогнозирование кросс-курса валют
- Прогнозирование котировок и спроса акций для биржевых спекуляций (не для долгосрочного вложения)
- Прогнозирование остатков средств на корреспондентских счетах банка.
Специалистами Лондонского Ситибанка разработаны коммерческие программы на базе искусственных нейронных сетей для прогнозирования курса валют.
1.2 Страховая деятельность банков
- оценка риска страхования инвестиций на основе анализа надежности проекта
- оценка риска страхования вложенных средств
1.3 Прогнозирование банкротств на основе нейросетевой системы распознавания
- анализ надежности фирмы с точки зрения возможности ее банкротства с помощью нейросетевой системы распознавания и выдача результата в дискретном виде (да. нет)
- анализ величины вероятности банкротства фирмы на основе многокритериальной оценки с построением нелинейной модели с помощью нейронных сетей (пример результата - 74% вероятности банкротства).
1.4 Определение курсов облигаций и акций предприятий с целью вложения средств в эти предприятия
- выделение долгосрочных и краткосрочных скачков курсовой стоимости акций на основе нелинейной нейросетевой модели
- предсказание изменения стоимости акций на основе нейросетевого анализа временных экономических рядов
- распознавание ситуаций, когда резкое изменение цены акций является результатом биржевой игры с помощью нейросетевой системы распознавания
- определение соотношения котировок и спроса
Прогнозирующая система может состоять из нескольких нейронных сетей, которые обучаются взаимосвязям между различными техническими и экономическими показателями и периодами покупки и продажи акций.
1.5 Применение нейронных сетей к задачам анализа биржевой деятельности
- нейросетевая система распознавания всплесков биржевой активности - анализ деятельности биржи на основе нейросетевой модели - предсказание цен на товары и сырье с выделением трендов вне зависимости от инфляции и сезонных колебаний - нейросетевая система выделения трендов по методикам японских свечей и других гистографических источников отображения информации.
1.6 Прогнозирование экономической эффективности финансирования экономических и инновационных проектов
- предсказание на основе анализа реализованных ранее проектов;
- предсказание на основе соответствия предлагаемого проекта экономической ситуации