Смекни!
smekni.com

Интегрированные пакеты математических расчетов (стр. 2 из 2)

4. Введите любое выражение, которое включает функцию Find, например: а:= Find(х, у).

Find(z1, z2, . . .)

Возвращает точное решение системы уравнений. Число аргументов должно быть равно числу неизвестных.

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое-либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find.

Пример решение системы уравнений в MathCAD.

Возможности пакета MAPLE для решения математических задач.

Общая характеристика пакета

Документ системы Maple состоит из различных объектов — текстовых областей, областей ввода, графических областей, секций, подсекций и т.д. На экране дисплея в среде Maple по умолчанию строки ввода прописаны красным цветом, ответ системы - синим, комментарии пользователя - черным. В строках рабочего листа после приглашения > набираются команды состоящие главным образом ввызове ее процедур. Команды выполняются последовательно сверху вниз. Команды Maple завершаются символами : или ; (первый вариант подавляет вывод). Часть строки после символа. # воспринимается как комментарий.

Типы данных

Входной язык пакета Maple не предусматривает обязательного объявления типов переменных. К встроенным типам данных, относятся рациональные, вещественные (с плавающей точкой), логические и символьные.

Система имеет встроенные константы Pi, I =

. Основание натуральных логарифмов е отсутствует, и работа с ним: заменяется ссылками на функцию ехр. В частности, собственно е приходится представлять как ехр(1). Бесконечность задается словом infinity. Все переменные по умолчанию считаются комплексными.

Из элементарных объектов могут быть сформированы более сложные – множества и списки. Элементы множества перечисляются через запятую в фигурных скобках и порядок их не важен, элементы списка – в [ ] и порядок важен. Обычно решения уравнений выдаются в виде списка.

Операторы обработки

Для формирования выражений используют стандартные символы +, -, *, /, ^, !.

Чтобы запомнить результаты вычислений необходимо присвоить некоторой переменной это значение. Ссылки на результаты трех предшествующих пунктов рабочего листа осуществляются с помощью знака %. Соответствующей кратности. Например:

>ex:=expand((x+l)*(x~2-x+l)); #перемножить

ex:=x^3+1

>factor(%); #разложить на множители выражение, полученное в предыдущем пункте

(x+l)(x^2-x+l)

Примеры использования Maple для решения математических задач

Решение уравнений и систем уравнений

Используется оператор Solve(выражение, переменная);

Пример:

>ex:=x^2+2*x-12;

>sol:=solve(ex,x);

>sol:=[1,-1,

,-
];

Если необходимо решить систему уравнений по одной или нескольким переменным данные необходимо вводить как множества - в фигурных скобках.

Эквивалентные преобразования

subs – выполняет замену переменных во втором аргументе согласно первому.

Пример: > subs (x=sqrt(r), 3*x+x^2);

expand - разворачивает произведения и функции сложных аргументов в суммы

Пример:

> expand((x+3)*(x-2));

> expand(cos(x-y));

factor выполняет противоположные преобразования.

Пример:

> factor(x^3-1,complex);

normal - приводит выражение к форме многочленов или дробей, числитель и знаменатель которых – взаимно простые полиномы с целыми коэффициентами.

Пример:

> normal ((x^2-y^2)/(x-y)^3);

combine – пытается объединить показатели степенных функций-сомножителей и понизить степени тригонометрических функций переходом к кратным углам.

Пример:

>combine(4*sin(x)^3,trig);

>combine(exp(x)^2*exp(y),exp);

Операции математического анализа

Операция

Пример команды MAPLE

Ответ

Вычисление пределов >limit(sin(x)/x, x=0);

1

Дифференцирование >diff(sin(x),x)

Неопределенный интеграл >int(sin(x),x)

Определенный интеграл >int(sin(x),x=0..Pi)

Графические возможности пакета Maple

Построение двумерных и трехмерных графиков.

Используется команда Plot(f,h,v,options) где f – задаваемая функция, h – диапазон аргумента (по умолчанию –10,10), v – диапазон значений функции (необязателен), options – опции, задающие вид координат, внешний вид графика и т.п.

Построение графиков функций в декартовых координатах

Построение графика в полярных координатах

> plot([sin(x), x^2/6], x=-5..5, color=[red,blue], style=[line, point]); > plot (sqrt(x),x=-5..5, coords=polar);

Столь же просто, как и график обычной функции в Декартовой системе координат, можно построить график трехмерной поверхности. В данном случае задана функция двух переменных Z(x,y):=sin(x*y) и ее график строится с использованием графической функции plot3d.