Смекни!
smekni.com

CASE-технологии проектирования автоматизированных информационных систем (стр. 5 из 5)

Иерархия контекстных диаграмм определяет взаимодей­ствие основных функциональных подсистем проектируемой АИС как между собой, так и с внешними входными и выход­ными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует АИС.

Разработка контекстных диаграмм решает проблему стро­гого определения функциональной структуры АИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке кото­рых участвуют разные организации и коллективы разработ­чиков.

После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами). Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Каждый про­цесс на DFD, в свою очередь, может быть детализирован при помощи DFD или миниспецификации. При детализации долж­ны выполняться следующие правила:

♦ правило балансировки — означает, что при детализа­ции подсистемы или процесса детализирующая диаг­рамма в качестве внешних источников/приемников данных может иметь только те компоненты (подсисте­мы, процессы, внешние сущности, накопители дан­ных), с которыми имеет информационную связь дета­лизируемая подсистема или процесс на родительской диаграмме;

♦ правило нумерации — означает, что при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т. д.

Миниспецификация (описание логики процесса) должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проек­та, смог выполнить их или разработать соответствующую программу.

Миниспецификация является конечной вершиной иерар­хии DFD. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком, исходя из следующих критериев:

♦ наличия у процесса относительно небольшого количе­ства входных и выходных потоков данных (2—3 пото­ка);

♦ возможности описания преобразования данных процес­сом в виде последовательного алгоритма;

♦ выполнения процессом единственной логической функ­ции преобразования входной информации в выходную;

♦ возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20— 30 строк).

При построении иерархии DFD переходить к детализа­ции процессов следует только после определения содержа­ния всех потоков и накопителей данных, которое описывает­ся при помощи структур данных. Структуры данных конст­руируются из элементов данных и могут содержать альтер­нативы, условные вхождения и итерации. Условное вхожде­ние означает, что данный компонент может отсутствовать в структуре. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означа­ет вхождение любого числа элементов в указанном диапазо­не. Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (кг, см и т. п.), диапазон значений, точность представления и форма физи­ческого кодирования. Для дискретных данных может указы­ваться таблица допустимых значений.

После построения законченной модели системы ее необ­ходимо верифицировать. В полной модели все ее объекты (подсистемы, процес­сы, потоки данных) должны быть подробно описаны и детали­зированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработ­ки. В согласованной модели для всех потоков данных и накопи­телей данных должно выполняться правило сохранения ин­формации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

Моделирование данных

Цель моделирования данных состоит в обеспечении раз­работчика АИС концептуальной схемой базы данных в фор­ме одной модели или нескольких локальных моделей, кото­рые относительно легко могут быть отображены в любую систему баз данных.

Наиболее распространенным средством моделирования данных являются диаграммы "сущность—связь" (ERD). С их помощью определяются важные для предметной области объекты (сущности), их свойства (атрибуты) и отношения друг с другом (связи). ERD непосредственно используются для про­ектирования реляционных баз данных (см. подразд. 2.2).

Нотация ERD была впервые введена П. Ченом (P. Chen) и получила дальнейшее развитие в работах Баркера.

Методология IDEF1

Метод IDEF1, разработанный Т. Рэмеем (Т. Ramey), так­же основан на подходе П. Чена и позволяет построить модель данных, эквивалентную реляционной модели в третьей нор­мальной форме. В настоящее время на основе совершенство­вания методологии IDEF1 создана ее новая версия — методо­логия IDEF1X. IDEF1X разработана с учетом таких требова­ний, как простота изучения и возможность автоматизации. IDEF IX-диаграммы используются рядом распространенных CASE-средств (в частности, ERWin, Design/IDEF).

Использованная литература

· Федотова Д.Э. CASE – технологии: учебник – М: Горячая линия – Телеком, 2007

· Трофимов В.Е., Лобачева И.Н. Информационные системы в экономике – М: Юнити-Дана, 2008

· Балдин Н.В., Уткин В.Б. Информационные системы и технологии в экономике – М: Юнити, 2007

· Титоренко Т.А. Автоматизированные информационные технологии в экономике – М: Юнити, 2006

· Барановская Т.П., Лойко В.И., Семенов М.И., Трубилин И.Т. Автоматизированные информационные технологии в экономике – М: Финансы и статистика, 2006

· www.citforum.ru

· www.interface.ru

· msk.treko.ru