Смекни!
smekni.com

Построение изображений ландшафта в реальном времени (стр. 2 из 8)

· поворот относительно осей x, y, z на угол

:

o ось x:

o ось y:

o ось z:


2.1.4 Проецирование

В настоящее время наиболее распространены устройства отображения, которые синтезируют изображение на плоскости, например – экране монитора. Устройства, которые создают по-настоящему объемные изображения, пока достаточно редки. Но все чаще появляются сведения о подобных разработках, например, об объемных мониторах [2].

При использовании графических устройств обычно используют проекции. Проекция задает способ отображения объекта на графическом устройстве.

При отображении пространственных объектов на экране необходимо знать координаты объектов. Рассмотрим две системы координат. Первая – мировые координаты, которые описывают истинное положение объектов в пространстве с заданной точностью. Другая – экранная система координат – система координат монитора, на экран которого осуществляется вывод изображения.

Пусть мировые координаты будут трехмерными декартовыми координатами. Для синтеза изображения на плоскости достаточно, казалось бы, двумерной экранной системы координат, однако из-за использования алгоритма Z-буфера (этот алгоритм будет описан далее), они должны быть трехмерными.

В компьютерной графике распространены параллельная и центральная (перспективная) проекции.

Рис. 2.1.4.1. Параллельная и центральная проекции

Для центральной проекции лучи проецирования исходят из одной точки, размещенной на конечном расстоянии от объектов и плоскости проецирования. Для параллельной проекции лучи проецирования параллельны.

В данной работе для визуализации сцены использовалась аксонометрическая (разновидность параллельной) проекция, для нее все лучи располагаются под прямым углом к плоскости проецирования.

Как правило, расположение плоскости проецирования задается с помощью двух углов -

и
.

Рис. 2.1.4.2. Аксонометрическая проекция

Для того, чтобы найти соотношения между координатами (x, y, z) и (X, Y, Z) для любой точки в трехмерном пространстве, рассмотрим преобразование системы координат (x, y, z) в систему (X, Y, Z). Такое преобразование может быть задано двумя шагами:

· поворот системы координат относительно оси z на угол

. Такой поворот описывается матрицей

;

· поворот новой системы координат (x, y, z) относительно оси x на угол

- получение координаты (X, Y, Z). Матрица поворота:

.

Преобразование координат выражается произведением матриц

Это же преобразование можно записать в формульном виде:

2.1.5 Отображение в окне

При формировании изображения на экране монитора, как уже было сказано, необходимы дополнительные преобразования, поскольку система координат в плоскости проецирования может не совпадать с системой координат устройства отображения.

Пусть (Xэ, Yэ, Zэ) – это экранные координаты объектов в графическом устройстве отображения. Координаты проецирования обозначим как (X, Y, Z).

Преобразование координат проекции в экранные координаты можно представить как растяжение/сжатие и сдвиг:

.

Такое преобразование сохраняет пропорции объектов благодаря одинаковому коэффициенту растяжения/сжатия k для всех координат. Следует отметить, что для плоского отображения координату Z можно отбросить.

2.1.6 Алгоритм Z-буфера

После получения треугольников ландшафта (триангуляции равномерной сетки) и проецирования их на экранную плоскость следует построение изображения ландшафта. В процессе его построения для удаления невидимых поверхностей используется алгоритм Z-буфера.

Это один из простейших алгоритмов удаления невидимых поверхностей. Работает этот алгоритм в пространстве изображения. Идея Z-буфера является простым обобщением идеи о буфере кадра. Буфер кадра используется для запоминания атрибутов (интенсивности) каждого пикселя в пространстве изображения, Z-буфер - это отдельный буфер глубины, используемый для запоминания координаты Z (глубины) каждого видимого пикселя в пространстве изображения. В процессе работы глубина или значение Z каждого нового пикселя, который нужно занести в буфер кадра, сравнивается с глубиной того пикселя, который уже занесен в Z-буфер. Если это сравнение показывает, что новый пиксель расположен впереди пикселя, находящегося в буфере кадра, то новый пиксель заносится в этот буфер и, кроме того, производится корректировка Z-буфера новым значением Z. Если же сравнение дает противоположный результат, то никаких действий не производится. По сути, алгоритм является поиском по x и y наибольшего значения функции Z(x, у). Блок-схема алгоритма выглядит следующим образом:


Рис. 2.1.6.1. Блок-схема алгоритма Z-буфера

Как уже было отмечено, главное преимущество алгоритма — его простота. Так как габариты пространства изображения фиксированы, оценка вычислительной трудоемкости алгоритма не более чем линейна. Поскольку элементы сцены или картинки можно заносить в буфер кадра или в Z-буфер в произвольном порядке, их не нужно предварительно сортировать по приоритету глубины. Поэтому экономится вычислительное время, затрачиваемое на сортировку по глубине, например в алгоритме художника.

Существенным недостатком алгоритма является потребность в значительном объеме памяти. Но в связи с тем, что стоимость оперативной памяти постоянно снижается, и установка дополнительных модулей памяти на индивидуальном компьютере стала привычным делом, этому недостатку перестали уделять особое внимание.

Другой недостаток алгоритма Z-буфера состоит в трудоемкости устранения лестничного эффекта, а также реализации эффектов прозрачности и просвечивания. Но так как в этой работе не ставилась задача реализации этих эффектов, то использование алгоритма Z-буфера вполне обоснованно.

Математическое содержание алгоритма заключается в следующем: если известно уравнение плоскости, несущей каждый многоугольник, то вычисление глубины каждого пикселя на сканирующей строке можно проделать пошаговым способом. Уравнение плоскости имеет вид:

Для сканирующей строки

, поэтому глубина пикселя на этой строке, у которого
, равна

или

,

но

, поэтому
.

Нахождение же абсцисс точек пересечения горизонтали со сторонами треугольника (это единственный вид многоугольников, используемый при визуализации в данной работе) производится следующим образом:

· для всех сторон треугольника записываются параметрические уравнения вида

;

· затем для каждой стороны находится параметр t при пересечении с горизонталью

:

;

· если

, то рассчитывается абсцисса точки пересечения горизонтали со стороной треугольника:

.

Рис. 2.1.6.2. Поиск абсцисс точек пересечения горизонтали со сторонами треугольника

2.1.7 Освещение

В любом трёхмерном приложении использование какой-либо модели освещения всегда придаёт реалистичность обрабатываемой сцене. Как правило, в неё включается закон, по которому рассчитывается освещённость точки в пространстве, и метод закраски освещённого многоугольника. От выбора той или иной модели освещения зависит качество изображения, построенного компьютером, и скорость работы программы.