Если задача линейного программирования содержит только две переменные, то ее можно решить графическим методом, выполняя следующие операции:
1) Строим все полуплоскости, соответствующие ограничениям системы.
2) Находим область допустимых решений (ОДР), как множество точек, в котором пересекаются все построенные полуплоскости.
3) Строим вектор
, выходящий из начала координат, где и – это коэффициенты при неизвестных в целевой функции . Этот вектор указывает направление возрастания целевой функции.4) Перпендикулярно вектору
проводим так называемую линию уровня (т.е. прямую , проходящую через начало координат).5) Перемещаем линию уровня
параллельно самой себе в направлении вектора (если задача на максимум (max)) или в противоположном направлении (если задача на минимум (min)) до тех пор, пока линия уровня имеет хотя бы одну общую точку с ОДР.6) Находим координаты
этой общей крайней точки, решая систему уравнений прямых, на пересечении которых она находится.7) Подставляем эти координаты в целевую функцию и находим ее max(или min).
Пример. Решить задачу линейного программирования графическим методом
maxРешение. Третье и четвертое ограничения системы – двойные неравенства, преобразуем их к более привычному для подобных задач виду
, это и , т.о. первое из полученных неравенств (или ) относится к условию неотрицательности, а второе к системе ограничений. Аналогично, это и .Т.о. задача примет вид
max ,Заменив знаки неравенств на знаки точных равенств, построим область допустимых решений по уравнениям прямых:
; ; ; .Областью решений неравенств является пятиугольник ABCDE.
Построим вектор
.Через начало координат перпендикулярно вектору проведем линию уровня . И затем будем перемещать ее параллельно самой себе в направлении вектора до точки выхода из области допустимых решений. Это будет точка С. Найдем координаты этой точки, решив систему, состоящую из уравнений первой и четвертой прямых: .Подставим координаты точки С в целевую функцию и найдем ее максимальное значение
Пример. Построить линии уровня и для задачи линейного программирования: max (min)Решение. Область допустимых решений – открытая область (рис. 6). Линия уровня
проходит через точку В. Функция Z имеет минимум в этой точке. Линию уровня построить нельзя, так как нет точки выхода из области допустимых решений, это значит, что .Задания для самостоятельной работы.
1. Найти область решений системы неравенств:
а)
б)2. Решить графически задачу линейного программирования
min3. Составить экономико-математическую модель и решить графически задачу линейного программирования
Фирма выпускает изделия двух видов А и В. Изделия каждого вида обрабатывают на двух станках (I и II). Время обработки одного изделия каждого вида на станках, время работы станков за рабочую смену, прибыль фирмы от реализации одного изделия вида А и вида В занесены в таблицу:
Станки | Время обработки одного изделия, мин. | Время работы станка за смену, мин. | |
А | В | ||
I | 10 | 20 | 1300 |
II | 4 | 13 | 720 |
Прибыль от одного изделия, грн. | 0,3 | 0,9 |
Изучение рынка сбыта показало, что ежедневный спрос на изделия вида В никогда не превышает спрос на изделия вида А более чем на 40 единиц, а спрос на изделия вида А не превышает 90 единиц в день.
Определить план производства изделий, обеспечивающий наибольшую прибыль.
Симплексный метод – это метод последовательного улучшения плана. Этим методом можно решать задачи линейного программирования с любым количеством переменных и ограничений.
Этот метод включает в себя три основные этапа:
1) Построение начального опорного плана.
2) Правило перехода к лучшему (точнее, нехудшему) решению.
3) Критерий проверки найденного решения на оптимальность.
При симплексном методе выполняются вычислительные процедуры (итерации) одного и того же типа в определенной последовательности до тех пор, пока не будет получен оптимальный план задачи или станет ясно, что его не существует.
Данную задачу линейного программирования необходимо сначала привести к каноническому виду; при этом правые части ограничений должны быть неотрицательными.
Признаком возможности построения начального опорного плана служит наличие в каждом ограничении-равенстве с неотрицательной правой частью базисной переменной.
Базисной называют плановую переменную, которая входит только в одно уравнение (а в другие не входит), и при этом имеет коэффициент, равный единице.
Пусть задача линейного программирования приведена к каноническому виду, и все уравнения системы ограничений имеют свою базисную переменную. Приравняв базисные переменные к соответствующим правым частям ограничений, а остальные переменные к нулю, получим опорное или базисное решение задачи.