Смекни!
smekni.com

Криптография Шифры их виды и свойства (стр. 2 из 3)

Одной из первых подобных систем стала изобретенная в 1790 г. Томасом Джефферсоном механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет "прошитую" в нем подстановку.

Практическое распространение роторные машины получили только в начале XX в. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 г. Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orangeи Purple (Япония). Роторные системы - вершина формальной криптографии, так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х гг.

3. Главная отличительная черта научной криптографии (1930 - 60-е гг.) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х гг. окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона "Теория связи в секретных системах", которая подвела научную базу под криптографию и криптоанализ. С этого времени стали говорить о криптологии (от греческого kryptos - тайный и logos - сообщение) - науке о преобразовании информации для обеспечения ее секретности. Этап развития криптографии и криптоанализа до 1949 г. стали называть донаучной криптологией.

Шеннон ввел понятия "рассеивание" и "перемешивание", обосновал возможность создания сколь угодно стойких криптосистем[2]. В 1960-х гг. ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающих практическую реализацию только в виде цифровых электронных устройств.

4. Компьютерная криптография (с 1970-х гг.) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации криптосистем, обеспечивающих при большой скорости шифрования на несколько порядков более высокую криптостойкость, чем "ручные" и "механические" шифры.

Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е гг. был разработан американский стандарт шифрования DES. Один из его авторов, Хорст Фейстель описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественныйстандарт шифрованияГОСТ 28147-89.

С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем,которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег.

В 1980-90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие[3]. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г. после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Таким образом, мы узнали следующее:

Криптология - это наука о преобразовании информации для обеспечения ее секретности, состоящая из двух ветвей: криптографии и криптоанализа.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров.

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей. Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития новых подходов и методов.

2. Шифры, их виды и свойства

В криптографии криптографические системы (или шифры) классифицируются следующим образом:

симметричные криптосистемы

асимметричные криптосистемы

2.1 Симметричные криптографические системы

Под симметричными криптографическими системами понимаются такие криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ, хранящийся в секрете. Все многообразие симметричных криптосистем основывается на следующих базовых классах:

I. Моно - и многоалфавитные подстановки.

Моноалфавитные подстановки - это наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. В случае моноалфавитных подстановок каждый символ исходного текста преобразуется в символ шифрованного текста по одному и тому же закону. При многоалфавитной подстановке закон преобразования меняется от символа к символу. Один и тот же шифр может рассматриваться и как моно - и как многоалфавитный в зависимости от определяемого алфавита.

Например, самой простой разновидностью является прямая (простая) замена, когда буквы шифруемого сообщения заменяются другими буквами того же самого или некоторого другого алфавита. Таблица замены может иметь следующий вид:


Исходные символы шифруемого текста а б в г д е ж з и к л м н о п р с т у ф
Заменяющие символы s р x l r z i m a y e d w t b g v n j o

Используя эту таблицу, зашифруем слово победа. Получим следующее: btpzrs

II. Перестановки - также несложный метод криптографического преобразования, заключающийся в перестановке местами символов исходного текста по некоторому правилу. Шифры перестановок в настоящее время не используются в чистом виде, так как их криптостойкость недостаточна, но они входят в качестве элемента в очень многие современные криптосистемы.

Самая простая перестановка - написать исходный текст наоборот и одновременно разбить шифрограмму на пятерки букв[4]. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней пятерке не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти, тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

III. Блочные шифры - семейство обратимых преобразований блоков (частей фиксированной длины) исходного текста. Фактически блочный шифр - это система подстановки на алфавите блоков. Она может быть моно - или многоалфавитной в зависимости от режимаблочного шифра. Иначе говоря, при блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов: шифры перестановки (transposition, permutation, P-блоки) и шифры замены (подстановки, substitution, S-блоки) [5]. В настоящее время блочные шифры наиболее распространены на практике.

Американский стандарт криптографического закрытия данных DES (Data Encryption Standard), принятый в 1978 г., является типичным представителем семейства блочных шифров и одним из наиболее распространенных криптографических стандартов на шифрование данных, применяемых в США. Этот шифр допускает эффективную аппаратную и программную реализацию, причем возможно достижение скоростей шифрования до нескольких мегабайт в секунду. Первоначально метод, лежащий в основе данного стандарта, был разработан фирмой IBMдля своих целей. Он был проверен Агентством Национальной Безопасности США, которое не обнаружило в нем статистических или математических изъянов.

DES имеет блоки по 64 бит и основан на 16-кратной перестановке данных, также для шифрования использует ключ в 56 бит. Существует несколько режимов DES: ElectronicCodeBook (ECB) и CipherBlockChaining (CBC).56 бит - это 8 семибитовыхсимволов, т.е. пароль не может быть больше чем восемь букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 256. Однако, данный алгоритм, являясь первым опытом стандарта шифрования, имеет ряд недостатков. За время, прошедшее после создания DES, компьютерная техника развилась настолько быстро, что оказалось возможным осуществлять исчерпывающий перебор ключей и тем самым раскрывать шифр. В 1998 г. была построена машина, способная восстановить ключ за среднее время в трое суток. Таким образом, DES, при его использовании стандартным образом, уже стал далеко не оптимальным выбором для удовлетворения требованиям скрытности данных. Позднее стали появляться модификации DESa, одной из которой является TripleDes ("тройной DES" - так как трижды шифрует информацию обычным DESом). Он свободен от основного недостатка прежнего варианта - короткого ключа: он здесь в два раза длиннее. Но зато, как оказалось, TripleDES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.