В соответствии с определением математическое ожидание (среднее значение) стационарного процесса в широком смысле
Mf=
f (x, y) p (x, y) dxdy =const. (2.8)Дисперсия
Df=σ 2=E (f(x, y) – ξ
= (f (x, y) – ξ p (x, y) dxdy =const. (2.9)Функция автокорреляции вычисляется в соответствии с (2.10):
R(
, ) = = f (x, y) f( , )) dxdy, (2.10)где
, задают сдвиги изображения по соответствующим осям координат.Для действительной функции f автокорреляционная функция является действительной и четной. Спектр двумерной автокорреляционной функции изображения (прямое преобразование Фурье автокорреляционной функции) равен энергетическому спектру изображения (спектральной плотности мощности) по определению:
S(
, ) = R ( , ) exp (− i( + d d . (2.11)Стационарный случайный процесс называется эргодическим, если любая его вероятностная характеристика может быть получена из одной реализации путем усреднения по времени. При этом среднее по времени равно среднему по ансамблю реализаций. Свойство эргодичности используется при оценке вероятностных характеристик изображений.
Качество изображения может определяться статистическими, спектральными, яркостными характеристиками изображения. В большинстве практических применений качество рассматривается как мера близости двух изображений: реального и идеального или преобразованного и исходного. При таком подходе можно оценивать как субъективную степень похожести изображений, так и получать объективные оценки параметров сигналов изображения: моменты первого и второго порядка разностного сигнала сравниваемых изображений, такие параметры преобразования как отношение С/Ш, коэффициенты сжатия информации и другие.
Субъективные критерии – это критерии визуального восприятия, оцениваемые в процессе экспертизы некоторой группой наблюдателей (экспертов). Наибольшее распространение получил метод оценок, при котором наблюдатель оценивает качество изображения в баллах по определенной шкале, считая, что идеальное изображение имеет максимальный балл. Этот метод позволяет оценить такие характеристики изображения как правильность цветопередачи, координатные искажения, чистоту переходов и др. Основные шкалы оценок при использовании метода сравнения приведены в таблице 2.1 [13].
Для интерпретации полученных экспертных оценок разработаны методы их представления, например построение кумулятивных кривых распределения оценок как функции от искажений. Средняя оценка определяется по формуле
где N‑общее число оценок, ni – число оценок равных i баллам, r – количество видов разных оценок.
Нормализованные оценки p выражают относительное качество в диапазоне [0,1]. При пятибалльной системе, когда g∈ [1,5]:
p = (g −1) / 4,
а средняя оценка вычисляется в соответствии с формулой:
pср = (
+ 0,75 + 0,5 + 0,25 )/ N.Таблица 2.1 Основные шкалы субъективных оценок качества изображения
Единицей ухудшения качества телевизионных (ТВ) изображений является имп (от impairment – ухудшение, повреждение). Эта единица введена Проссером, Аллнаттом и Льюисом в 1964 г. и используется МККР (Международным консультативным комитетом по радиосвязи (CCIR)). Ухудшение обратно пропорционально нормализованной оценке качества и
изменяется от ∞ до 0 при изменении p от 0 до 1 в соответствии с формулой:
I =1 / p −1.
Достоинство методики оценки ухудшения состоит в том, что результирующая оценка ухудшения получается арифметическим суммированием оценок ухудшения, вызванных различными видами искажений сигналов изображения. Основываясь на психофизических свойствах наблюдателя, субъективные оценки позволяют характеризовать восприятие изображения. Интегральный критерий качества формируется по обобщенной формуле:
где M ‑ число параметров, по которым оценивается качество изображения; ν – показатель степени. Значение показателя степени принимают равным 1, но могут быть использованы, например, такие значения как 0,78 или 2. В настоящее время применяются и другие оценки качества изображений. При
разработке аппаратных средств специального назначения большое значение имеет оценка объективных характеристик качества преобразованного изображения. Объективными критериями, используемыми при оценке качества изображений, являются критерии, позволяющие получить просто вычисляемую характеристику изображения разностного сигнала. К таким критериям относится, прежде всего, среднеквадратический критерий. По нему мерой различия двух изображений f (x, y) и
(x, y) является среднеквадратическое значение разностного сигнала двух изображений. Для непрерывных изображений, заданных при x∈[0, N] и y∈[0, M], среднеквадратическое отклонение (СКО) вычисляется по формуле: (2.12)В некоторых случаях используется критерий максимальной ошибки, который в отличие от (2.12), позволяет установить значение максимальной ошибки преобразования:
= max |f (x, y) – | (2.13)(x, y)
Применяются и другие объективные критерии качества изображений [14]. Существует определенное разногласие в оценках качества, даваемых человеческим глазом (субъективных), и объективных, полученных в виде количественных показателей. Глаз является совершенным изобретением природы, с ним не могут соревноваться достаточно примитивные объективные оценки типа СКО, пикового отношения сигнал/шум (ПСШ) и др. Поэтому некоторые результаты, рассматриваемые с точки зрения объективных оценок как одинаковые, визуально могут восприниматься различно. Однако объективные критерии используются при компьютерной обработке изображений в системах с автоматическим принятием решений. Функционирование автоматических компьютерных систем полностью подчинено математическим критериям, и качество их работы оценивается только объективными показателями. Понятно, что и качество изображений, используемых в этих системах, также должно оцениваться только по объективным критериям.
Нейронные сети основывались на высокоуровневом моделировании процесса мышления на обычных компьютерах. Чтобы создать искусственный интеллект, необходимо построить систему с похожей на естественную архитектурой, т.е. перейти от программной реализации процесса мышления к аппаратной.