Компьютерная обработка и распознавание изображений представляет собой быстро развивающуюся самостоятельную дисциплину. Компьютерная обработка изображений предполагает обработку цифровых изображений с помощью компьютеров или специализированных устройств, построенных на цифровых сигнальных процессорах. При этом под обработкой изображений понимается не только улучшение зрительного восприятия изображений, но и классификация объектов, выполняемая при анализе изображений.
В 60-е годы прошлого века получила развитие особая наука об изображениях – «иконика», которая посвящена исследованиям общих свойств изображений, целей и задач их преобразования, обработки и воспроизведения, распознавания графических образов [1].
Термин «иконика» происходит от греческого «eikon», что означает изображение, образ. Сегодня под ним понимают «создание и обработку изображений с помощью ЭВМ, что совпадает с понятием компьютерной обработки изображений.
Области применения цифровой обработки в настоящее время значительно расширяются, вытесняя аналоговые методы обработки сигналов изображений. Методы цифровой обработки широко применяются в промышленности, искусстве, медицине, космосе. Они применяются при управлении процессами, автоматизации обнаружения и сопровождения объектов, распознавании образов и во многих других приложениях.
Цифровая передача изображений с космических аппаратов, цифровые каналы передачи сигналов изображений требуют обеспечения передачи все больших потоков информации. Если при передаче цифрового сигнала цветного телевидения необходимо передавать потоки порядка 216 Мбит/с, то для передачи телевидения высокой четкости скорость передачи должна составлять порядка 1 Гбит/c. Формирование изображений, улучшение качества и автоматизация обработки медицинских изображений, включая изображения, создаваемые электронными микроскопами, рентгеновскими аппаратами, томографами и т.д., являются предметом исследования и разработки. Сегодня в медицинской технике широко применяются системы формирования изображения, его преобразования в цифровую форму, визуализация и документирование путем введения в компьютер изображений с помощью специализированных устройств захвата видео.
Автоматический анализ в системах дистанционного наблюдения широко применяется при анализе местности, в лесном хозяйстве, например, для автоматического подсчета площади вырубок, в сельском хозяйстве для наблюдения за созреванием урожая, при разведке, в системах противопожарной безопасности. Контроль качества производимой продукции выполняется благодаря автоматическим методам анализа сцен.
Компьютерная обработка изображений применяется в задачах экспертизы живописи неразрушающими методами [2]. Для восстановления старых фильмов применяются методы автоматической компенсации дефектов видеоматериала, полученного после преобразования киноизображения в видео.
Сегодня трудно представить область деятельности, в которой можно обойтись без компьютерной обработки изображений. Интернет, сотовый телефон, видеокамера, фотоаппарат, сканер, принтер, так прочно вошедшие в наш быт, – немыслимы без компьютерной обработки изображений.
При компьютерной обработке изображений решается широкий круг задач, таких как улучшение качества изображений; измерение параметров; спектральный анализ многомерных сигналов; распознавание изображений; сжатие изображений.
Устройства формирования изображений получили широкое распространение и применение в самых различных областях науки, техники, промышленности, медицине, биологии и др. [3–6]. Они являются неотъемлемыми компонентами систем и устройств, применяемых в фотокинотехнике, телевидении, системах технического зрения: дневного, ночного и теплового видения, при дистанционном зондировании Земли. Назначение этих систем предполагает решение комплекса технических и научных задач, требующих синтеза и анализа методов обработки, бинаризации, классификации изображений. Развитие микроэлектроники, переход от аналоговой формы сигналов к цифровой позволяют расширить палитру и повысить сложность применяемых алгоритмов для решения поставленных задач [7,8]. Рассмотрим некоторые из устройств формирования изображений.
Устройства формирования изображений позволяют создавать изображения, порождаемые электромагнитным излучением в спектре от гамма излучения до инфракрасного (ИК). Рассмотрим некоторые из устройств формирования, которые включают электровакуумные и твердотельные фоточувствительные приборы.
Электровакуумные фоточувствительные приборы имеют фотокатод, эмитирующий электроны, и анод, на который подается положительный потенциал. Большинство передающих электровакуумных трубок и систем на их основе работают в видимом диапазоне. Отдельную группу оптико – электронных систем составляют приборы ночного видения, работающие в ближнем ИК диапазоне. Приемником и преобразователем ИК излучения в видимый диапазон в них является электронно – оптический преобразователь (ЭОП) [9]. В ЭОП анодом является люминисцентный экран, создающий видимое изображение при бомбардировке его электронами. Таким образом, он преобразует оптическое излучение в оптическое излучение, а не в электрический сигнал.
Передающие электроннолучевые трубки (телевизионные) преобразуют оптическое излучение в электрический сигнал. В электровакуумных фотоприборах возможна регистрация предельно малых оптических сигналов на уровне единичных фотоэлектронов, высокое разрешение. Основные недостатки – это сложные вакуумные стеклянные и металлоконструкции, ограниченный срок службы катодов, мишеней и анодов, высокие напряжения питания; ослепление, ограничение спектральной чувствительности близким ИК диапазоном, большие массогабаритные характеристики.
Твердотельные фоточувствительные приборы обеспечивают преобразование оптических сигналов в электрические в твердом теле. Существует два класса твердотельных фоточувствительных приборов: квантовые и тепловые приемники излучения.
Квантовые фотоприемники основаны на изменении электрических свойств полупроводника при поглощении фотона. Фотон передает свою энергию электрону, переводя его на более высокий энергетический уровень. Этот процесс фотогенерации сопровождается формированием пары носителей электрон и дырка. К таким приборам относятся фотодиоды, фоторезисторы, приборы с зарядовой связью (ПЗС). ПЗС обеспечивают высокое разрешение (размеры элементов растра менее 10 мкм), большие форматы (768x576 и больше), возможность управления экспонированием, высокую однородность чувствительности элементов, большее, чем в ЭЛТ, отношение сигнал/шум (С/Ш), малые габариты, вес и потребляемую мощность, имеют сравнительно низкую стоимость и большую номенклатуру изделий.
Тепловые твердотельные приемники излучения используют эффект изменения электрических свойств материала (емкости, сопротивления) при изменении его температуры вследствие нагрева при поглощении теплового излучения (при радиационном нагреве). Болометрическим эффектом называется изменение электрического сопротивления материала R при радиационном нагреве вследствие изменения температуры T этого материала. Болометрический эффект характеризуется температурным сопротивлением материала
=,где R – сопротивление материала (чувствительного слоя болометра) при температуре T. Приемник, построенный на основе этого эффекта, называется болометром. К фотоприемным устройствам резисторного типа относятся микроболометрические матрицы. Термочувствительный слой элементов таких матриц изготавливается из пленок окислов ванадия, кремния и германия. Для устранения влияния температуры окружающей среды, приводящей к нестабильности параметров, микроболометр заключают в вакуумированный корпус с термоэлектрической системой стабилизации рабочей температуры. Оптический модулятор не нужен. Сегодня эти приемники уступают охлаждаемым фотонным матричным приемникам по чувствительности, размерам элементов и быстродействию [10].
Второй тип приборов – это пироэлектрические фотоприемники. Они используют тонкие пленки особых кристаллических диэлектриков, обладающих пироэлектрическим (ферроэлектрическим) эффектом. Чувствительный элемент в таких приемниках представляет собой ферроэлектрический конденсатор, при изменении температуры которого, изменяется его диэлектрическая постоянная, а, следовательно, и емкость.
Изменение емкости при постоянном приложенном к конденсатору напряжении, приводит к изменению заряда, поступающего от конденсатора на схему считывания сигнала. Поскольку изменение заряда происходит только при изменении температуры, то для наблюдения за объектами с постоянной температурой, необходимо модулировать падающее излучение. Осуществляется это обтюратором, который с частотой кадров перекрывает падающий на приемник поток излучения. В качестве диэлектриков используются ниобат калия тантала (KTN), титанат барий-стронций (BST) и другие виды керамики. Достоинствами пироэлектрических приемников являются почти равномерная спектральная чувствительность в широком диапазоне (от 800 нм до 25 мкм), высокая временная стабильность и низкая стоимость.
Третий тип тепловых приборов построен на использовании термопар (термоэлектрические матрицы). Два слоя разнотипных металлов/ полупроводников образуют термопару. Один слой облучается радиацией и нагревается, второй – экранирован от обучения. Между ними возникает термо ЭДС U. Величина ЭДС пропорциональна производной от этой ЭДС по температуре
= ∂U / ∂T. Термопара является генератором напряжения. При последовательном включении термоэлементов чувствительность возрастает пропорционально числу включенных элементов. Стабилизатор температуры не нужен. Термопары часто образуют пленками алюминия и поликристаллического кремния, расположенными друг под другом. Пленки разделены слоем [11]. Термоэлементы имеют линейные рабочие хаарктеристики, не требуют обтюрации (в отличие от пироэлектрических приемников), работают без термостабилизации, не требуют источников питания.