Спецификация постановки задачи данного курсового проекта – определить максимальную длину очередей перед каждой ЭВМ (NО1, NО2, NО3) и коэффициенты загрузки каждой из ЭВМ (ZЭ1, ZЭ2, ZЭ3). В качестве исходных данных задаются интервал времени (интенсивность) поступления заданий в вычислительную систему, состоящую их трех ЭВМ (tпр ±Dtпр), интервал времени обработки заданий на каждой из ЭВМ (tЭ1, tЭ2, tЭ3), а также процент распределения заданий на одну из трех ЭВМ (РЭ1, РЭ2, РЭ3), процент распределения заданий на последний этап обработки на вторую и третью ЭВМ (РР2, РР3).
Спецификация ограничений на параметры исследуемой системы следующая: исходные данные должны быть положительными числами, кроме того, процент распределения заданий на одну из трех ЭВМ (РЭ1, РЭ2, РЭ3) и процент распределения заданий на последний этап обработки на вторую и третью ЭВМ (РР2, РР3), каждый по отдельности в сумме должен составлять 100%.
Схема программы (см. рис. 4) зависит от выбранного языка моделирования.
Блоки схемы соответствуют блок-диаграмме языка GPSS, что позволит легко написать текст программы, провести ее модификацию и тестирование. Для полного покрытия программы тестами необходимо так подобрать параметры, чтобы все ветви в разветвлениях проходились по меньшей мере по одному разу. Интерпретатор языка GPSS позволяет проанализировать статистические данные по каждой ветви программы.
Оценка затрат машинного времени проводится по нескольким критериям эффективности программы: затраты памяти ЭВМ, затраты вычислений (идентичны времени вычислений при последовательной обработке), время вычислений («время ответа»). Форма представления входных и выходных данных определяется интерпретатором языка GPSS и изменить ее по усмотрению пользователя невозможно.
рис. 4. Схема программы
Метки | Текст программы | Комментарии |
Simulate | Начало программирования | |
Generate 3,1,,200 | Генерация входных заданий | |
Transfer .400, Met4, Met1 | 40% заданий направляется на метку 1, а 60% - на метку 4 | |
Met1 | Queue EVMQ1 | Сбор статистических данных о входе задания в очередь EVMQ1 к прибору EVM1 |
Seize EVM1 | Занятие прибора EVM1 | |
Depart EVMQ1 | Сбор статистических данных о выходе задания из очереди EVMQ1 к прибору EVM1 | |
Advance 7,4 | Обработка заявки в приборе EVM1 | |
Release EVM1 | Освобождение прибора EVM1 | |
Transfer .300, Met3, Met2 | 30% заданий, обработанных на приборе EVM1 направляется на метку 2, а 70% - на метку 3 | |
Met4 | Transfer .500, Met3, Met2 | из 60% заданий - 30% заданий направляется на обработку к метке 2 и 30% к метке 3 |
Met2 | Queue EVMQ2 | Сбор статистических данных о входе задания в очередь EVMQ2 к прибору EVM2 |
Seize EVM2 | Занятие прибора EVM2 | |
Depart EVMQ2 | Сбор статистических данных о выходе задания из очереди EVMQ2 к прибору EVM2 | |
Advance 3,1 | Обработка заявки в приборе EVM2 | |
Release EVM2 | Освобождение прибора EVM2 | |
Terminate 1 | Уничтожение одного задания | |
Met3 | Queue EVMQ3 | Сбор статистических данных о входе задания в очередь EVMQ3 к прибору EVM3 |
Seize EVM3 | Занятие прибора EVM3 | |
Depart EVMQ3 | Сбор статистических данных о выходе задания из очереди EVMQ2 к прибору EVM3 | |
Advance 5,2 | Обработка заявки в приборе EVM3 | |
Release EVM3 | Освобождение прибора EVM3 | |
Terminate 1 | Уничтожение одного задания | |
Start 200 | ||
End | Конец моделирования |
На данном подэтапе последняя проверка машинной реализации модели проводится следующим образом:
а) обратным переводом программы в исходную схему, что в очередной раз подтверждает правильность пути исследования для моделирования;
б) проверкой отдельных частей программы при решении различных тестовых задач;
в) объединением всех частей программы и проверкой ее в целом на контрольном примере моделирования варианта системы.
На этом подэтапе необходимо также проверить затраты машинного времени на моделирование.
Для получения максимального объема необходимой информации об объекте моделирования при минимальных затратах машинных ресурсов проведем полный факторный эксперимент с четырьмя существенными факторами (переменных и параметров).
Согласно выбранным критериям оценки эффективности системы и целевой функции модели выберем следующие существенные факторы:
х1 – интервал времени (интенсивность) поступления заданий в вычислительную систему, состоящую их трех ЭВМ, Dtпр = 3мин;
х2 – интервал времени обработки заданий на первой ЭВМ, tЭ1 = 7;
х3 – интервал времени обработки заданий на второй ЭВМ tЭ2 = 3;
х4 – интервал времени обработки заданий на третьей ЭВМ tЭ3 = 5.
Зададим уровни вариации для каждого фактора:
Dх1= 1, Dх2= 4, Dх3= 1, Dх2= 2.
Составим матрицу плана полного факторного эксперимента
Номер опыта | Фактор х1 | Фактор х2 | Фактор х3 | Фактор х4 |
0 (базовый) | 3 | 7 | 3 | 5 |
1 | 2 | 3 | 2 | 3 |
2 | 2 | 3 | 2 | 7 |
3 | 2 | 3 | 4 | 3 |
4 | 2 | 3 | 4 | 7 |
5 | 2 | 11 | 2 | 3 |
6 | 2 | 11 | 2 | 7 |
7 | 2 | 11 | 4 | 3 |
8 | 2 | 11 | 4 | 7 |
9 | 4 | 3 | 2 | 3 |
10 | 4 | 3 | 2 | 7 |
11 | 4 | 3 | 4 | 3 |
12 | 4 | 3 | 4 | 7 |
13 | 4 | 11 | 2 | 3 |
14 | 4 | 11 | 2 | 7 |
15 | 4 | 11 | 4 | 3 |
16 | 4 | 11 | 4 | 7 |
Для проведения эксперимента потребуется только один персональный компьютер без внешних устройств. Время выполнения эксперимента ограничено лишь временем доступа к персональному компьютеру.
Набор исходных данных для ввода в ЭВМ представлен в виде матрицы плана, с помощью которой в достаточном объеме исследуется факторное пространство. Получение выходных данных зависит от интерпретатора языка GPSS. Дополнительные расчеты не требуются.
Планирование полного факторного эксперимента с моделью позволяет вывести необходимое количество выходных данных, при этом каждый опыт соответствует одному из возможных состояний исследуемой системы. Статистические характеристики модели вычисляются в интерпретаторе языка GPSS автоматически. Проведение регрессионного, корреляционного и дисперсионного анализа не требуется.
Результаты моделирования представлены в табл. 1, 2.
Коэффициент использования – это доля времени моделирования, в течение которого устройство было занято. Среднее время занятия устройства из расчета именно одним транзактом в течение времени моделирования, единица измерения - в минутах.
Таблица 1. Результаты работы устройств EVM1, EVM2, EVM3
Номер опыта | Устройство | Кол-во раз, когда устройство было занято | Коэффициент использования | Среднее время занятия устройства | Конечное время работы устройств |
1 | 2 | 3 | 4 | 5 | 6 |
0 | EVM1 | 77 | 0,831 | 7 | 649,000 |
EVM2 | 73 | 0,337 | 3 | ||
EVM3 | 127 | 0,978 | 5 | ||
1 | EVM1 | 80 | 0,583 | 3 | 412,000 |
EVM2 | 84 | 0,408 | 2 | ||
EVM3 | 116 | 0,845 | 3 | ||
2 | EVM1 | 81 | 0,303 | 3 | 803,000 |
EVM2 | 86 | 0,214 | 2 | ||
EVM3 | 114 | 0,994 | 7 | ||
3 | EVM1 | 86 | 0,623 | 3 | 414,000 |
EVM2 | 81 | 0,783 | 4 | ||
EVM3 | 119 | 0,862 | 3 | ||
4 | EVM1 | 83 | 0,316 | 3 | 789,000 |
EVM2 | 88 | 0,446 | 4 | ||
EVM3 | 112 | 0,994 | 7 | ||
5 | EVM1 | 96 | 0.996 | 11 | 1060,000 |
EVM2 | 83 | 0.331 | 2 | ||
EVM3 | 117 | 0.157 | 3 | ||
6 | EVM1 | 89 | 0.991 | 11 | 988,000 |
EVM2 | 91 | 0.772 | 2 | ||
EVM3 | 109 | 0.184 | 7 | ||
7 | EVM1 | 87 | 0.994 | 11 | 963,000 |
EVM2 | 87 | 0.352 | 4 | ||
Продолжение таблицы 1 | |||||
1 | 2 | 3 | 4 | 5 | 6 |
EVM3 | 113 | 0.361 | 3 | 963,000 | |
8 | EVM1 | 84 | 0.994 | 11 | 930,000 |
EVM2 | 87 | 0.374 | 4 | ||
EVM3 | 113 | 0.851 | 7 | ||
9 | EVM1 | 81 | 0.302 | 3 | 805,000 |
EVM2 | 92 | 0.229 | 2 | ||
EVM3 | 108 | 0.402 | 3 | ||
10 | EVM1 | 66 | 0.239 | 3 | 830,000 |
EVM2 | 90 | 0.217 | 2 | ||
EVM3 | 110 | 0.928 | 7 | ||
11 | EVM1 | 75 | 0.280 | 3 | 804,000 |
EVM2 | 92 | 0.458 | 4 | ||
EVM3 | 108 | 0.403 | 3 | ||
12 | EVM1 | 77 | 0.945 | 3 | 822,000 |
EVM2 | 89 | 0.433 | 4 | ||
EVM3 | 111 | 0.281 | 7 | ||
13 | EVM1 | 91 | 0.993 | 11 | 1008,000 |
EVM2 | 87 | 0.336 | 2 | ||
EVM3 | 113 | 0.173 | 3 | ||
14 | EVM1 | 78 | 0.975 | 11 | 880,000 |
EVM2 | 93 | 0.211 | 2 | ||
EVM3 | 107 | 0.851 | 7 | ||
15 | EVM1 | 80 | 0.992 | 11 | 887,000 |
EVM2 | 85 | 0.383 | 4 | ||
EVM3 | 115 | 0.389 | 3 | ||
16 | EVM1 | 82 | 0.988 | 11 | 913,000 |
EVM2 | 83 | 0.364 | 4 | ||
EVM3 | 117 | 0.897 | 7 |
Таблица 2. Результаты работы очередей EVMQ1, EVMQ2, EVMQ2