Смекни!
smekni.com

Научные проблемы Интернета (стр. 1 из 5)

УО «БГУИР»

кафедраинформационных технологий автоматизированных систем

РЕФЕРАТ

на тему:

«Научные проблемы Интернета»

МИНСК, 2008

Научные проблемы Интернета группируются вокруг следующих задач:

· Защита информации

· Сжатие информации

· Поиск информации

· Распознавание информационных объектов (текста и образов)

· Прогнозирование временных рядов

· Классификация документов

· Выбор и оценка многокритериальных альтернатив

· Принятие решений и логический вывод и др.

Рассмотрение всех этих задач выходит за рамки настоящего труда. Рассмотрим только некоторые задачи.

1 Защита информации

Современные способы защиты информации используют в первую очередь различные методы шифрования. Мы рассмотрим здесь два криптографических метода: RSA и DES. Основные принципы криптографии можно сформулировать следующим образом.

1. В шифровании основную роль играет не алгоритм, а ключ.

2. Алгоритм шифрования должен быть таким, чтобы шифрование выполнялось легко и эффективно с вычислительной точки зрения; наоборот, дешифрование должно представлять собой сложнейшую математическую задачу (например, переборного типа).

Алгоритм RSA. Пусть необходимо передать по линии связи числа x (рассмотрим здесь только целые положительные числа). Вместо числа x передают число y, вычисляемое по формуле

,
(1.1)

где e и m являются открытыми числами (известны всем абонентам сети).

Требуем, чтобы e и m были взаимно простыми числами (т.е. не числами общих делителей, кроме 1, причем

).

Оказывается, что зная y, e и m, найти x – сложнейшая математическая задача. Пока же продемонстрируем, как найти y по x, e, m.

Операция

(1.2)

находит целочисленный остаток a от деления b на m. Например,

2 = 17 mod 5

или

1 = 41 mod 8.

Но пусть требуется найти

630 mod 18 = ?

Это сделать посложнее. Мно записать

630 = 2*315 = 2*5*63 = 2*5*7*9 = 63*10.

Теперь можно использовать правило разложения на множители

.

В самом деле, пусть

,

,

.

Тогда

.

Последняя сумма дает остаток от деления на m, равный

. Но
,
. Поэтому

.

Теперь нетрудно это правило применить, скажем, к

713mod 8 = ?

Запишем

.

Имеем

. Поэтому
.

Обратимся теперь к формуле (6.16).

Пусть

,
,
.

Найдем

.

Итак,

. Это значение и будет передано по сети вместо x.

Теперь рассмотрим, как восстановить x по y, m, e. Для этой цели нужно найти число d, удовлетворяющее условию

,
(1.3)

где

– значение функции Эйлера от числа m. Функция Эйлера вычисляется сравнительно просто. Так,
.
(1.4)

Если p простое число и r – целое, то

.
(1.5)

Формул (1.4) и (1.5) достаточно для того, чтобы найти функцию Эйлера для любого целого положительного числа. В нашем случае получаем:

.

Для любознательных читателей отметим, что значение

равно числу целых чисел на отрезке 1..m, взаимно простых с m. Отыскание значения функции Эйлера для больших целых чисел является вычислительной задачей очень большой сложности.

Пример.

. Все четыре числа: 1, 2, 3, 4 взаимно просты с m.

Теперь обратимся к уравнению (3.3). В этом уравнении d играет роль секретного ключа. Решить уравнение (3.3) путем перебора значений d можно, но если в числе m, например, 100 цифр, то на вычисление d уйдет достаточно много времени. Для небольших значений, таких как в нашем примере, можно воспользоваться алгоритмом решения уравнений в целых числах, который мы и приведем.

Итак, в нашем примере уравнение такое:

.
(1.6)

Уравнение (1.6) можно переписать следующим известным образом:

.
(1.7)

В (1.7) r и d неизвестные целые числа. Представим (1.7) в виде системы двух линейных неравенств.

,

,

или, что эквивалентно:

,
.
(1.8)

В неравенстве с положительной правой частью выделим член с минимальным по модулю коэффициентом и разрешим неравенство относительно этого члена:

,
.

Отсюда легко получить отсекающее неравенство:

(a)
,(b)
,(c)
.
(1.9)

Здесь z – новая целочисленная переменная. Заметим, что переход от (a) к (b) в (1.9) правомерен, так как r , d, z – целочисленны.

Выполним подстановку (3.9) в систему (1.8). Получим новую систему:

,
.
(1.10)

Обратим внимание на следующее принципиальное обстоятельство. В сравнении с (1.8) значение минимального коэффициента понизилось. Этот факт можно строго обосновать. Следовательно, весь процесс должен закончиться рано или поздно одним из двух результатов:

1) минимальный коэффициент по модулю станет равным 1 (как в (1.10)); будет получена система вида

,

,

где a и b – взаимно просты (в этом случае нет решения в целых числах).

В первом случае процесс решения завершен. Получаем из (1.10) подстановку для d:

.
(1.11)

Тогда из (1.9) найдем:

.
(1.12)

Итак, формулы (1.11) и (1.12) и дают нам итоговые подстановки для d и r из (1.7). Например, пусть

. Тогда
,
. Возьмем именно это значение для минимального d.

Итак, мы подошли к решающему моменту: наш секретный ключ

. Получили число
,
,
.Восстанавливаем x по формуле: