Тут доцільно зробити зауваження про стандарт білого кольору, який визначається як сумарний колір, створений збалансованими базовими люмінофорами. Правда можуть бути уточнення, стосовні денного та штучного освітлення. До стандарту білого кольору має відношення так звана температура кольору. Спектральний розподіл випромінювання є функцією температури до якої нагріто випромінювача. Конструктивні особливості люмінофорів, вживаних в моніторах, приводять до того, що білий колір екрану має приблизно подвійний надлишок синьої компоненти. Якби це було випромінюванням еталонного джерела білого світла, то його спектр відповідав би спектру випромінювача, нагрітого до температури 9300К. Звичайно око адаптується і не помічає зсуву у білому кольорі, якщо тільки його не доводиться порівнювати з реальними кольорами. При необхідності відтворення точного білого кольору необхідно користуватися моніторами, які дозволяють встановити температуру кольору в діапазоні від 5000К до 5500К. Трохи простіші монітори використовують стандарт CIE 6504K, що більшості людей здається трохи зсунутим до синього. Стандартом білого в умовах штучного освітлення вважається температура 3200К, для більшості людей білий колір при цій температурі набуває жовтого відтінку.
Другу проблему аддитивної моделі - проблему її повноти - буде розглянуто у підрозділі 3:..
Субтрактивна модель CMYK
Досі ми розглядали світло, безпосередньо створене джерелами світла. Але тіла, які ми бачимо, можуть, не випромінюючи самі, відсвічувати світло від інших освітлювачів. Пофарбовані різними фарбами поверхні, відсвічують по різному, поглинаючи певну частину спектру. Якщо з повного спектру, видалити один з кольорів, то кольори, що залишаться, називаються колірним доповненням. Кольорі та їх доповнення наведені в таблиці
Видалений колір | Колір залишку | ||
Червоний | Голубий | ||
Жовтий | Синій | ||
Зелений | Пурпурний | ||
Голубий | Червоний | ||
Синій | Жовтий |
Ця властивість світла використовується при виділенні певного кольору за допомогою світлового фільтру, а також при роздруку на папері. При друкові задача полягатиме у створенні за допомогою відсвічування на папері аналогів джерел червоного, зеленого і синього кольорів. Для цього скористаємося попарно змішаними кольорами: голубим (cyan), пурпурним (magenta) і жовтим (yellow). Доповненням до червоного кольору є голубий (або сума синього з зеленим), отже голубий рефлектор поглинатиме червону складову. Умовно позначимо це як
C = B + G (-R).
Доповненням до жовтого служить синій. Такі ж міркування приведуть до запису
Y = R + G (-B).
Отже наявність у одній точці (точніше безпосередньо поблизу одне одного) двох рефлекторів - голубого і жовтого приведе до вилучення із білого світла відповідно червоної і синьої складових. Залишковим кольором стане зелений. В наших умовних позначеннях
C + Y = [B + G (-R)] + [R + G (-B)] = G.
Змішування голубого кольору з жовтим дає зелений. В той же спосіб запишемо
C + M = [B + G (-R)] + [R + B (-G)] = B;
Y + M = [R + G (-B)] + [R + B (-G)] = R.
Або змішування голубого з пурпуровим дає синій, а пурпурового з жовтим - червоний. ілюстрацію цього явища наведено на мал. 3.11. Одержана колірна модель називається субтрактивною (різницевою) моделлю CMY - за початковими літерами трьох базових кольорів.
Окремо розглянемо спосіб відтворення чорного кольору. Згідно моделі CMY його можна одержати змішанням усіх трьох базових кольорів, але це неефективно перш за все з економічної точки зору. Грубо кажучи, навіщо виливати три банки кольорових фарб там, де можна було б обмежитися однією банкою чорної фарби. До того ж синтез чорної фарби приводить до деяких проблем технологічного характеру, які будуть розглянуті пізніше. Ми лише відмітимо практичну доцільність доповнити триколірну модель CMY четвертим кольором. Одержана модель називається CMYK, де K взято з останньої літери слова blacK - чорний.
Чорна складова виділяється із трьох інших, взятих у рівних частинах. Але процес змішування кольорів CMYK не зовсім лінійний. На мал. показане поступове перенесення колірних складових CMY у чорну складову. Його можна вважати задовільним для офісних застосувань, але художні роботи розраховуються за більш складними залежностями. Цифри під малюнками позначають кількості відповідних фарб у процентах.
Колірні моделі HSB (HSV)
Розглянуті досі колірні моделі мають один недолік: грунтуючись на елементарних випромінювачах, вони визначають довільний колір у термінах базових кольорів. Таке визначення зводиться до складних математичних розрахунків з застосуванням спектральної теорії та рядів Фур'є і аж ніяк не використовують властивості самих кольорів, що визначаються.
існує ціла система моделей, що оперують з кольором на інтуїтивному рівні. Одна з них - система HSB (HSV) - використовує поняття колірного тону (hue), насиченості (saturation) і яскравості (brightness) або інтенсивності (value). Уявімо собі циліндр. Руху вздовж осі циліндра відповідатиме зміна інтенсивності від нуля до максимуму (зміна кольорів від чорного до білого через відтінки сірого кольору). Вибірково частини колірного циліндра зображено на малюнку.
Тональність має кругову геометричну інтерпретацію, запропоновану ще Ньютоном. Розглянемо горизонтальний перетин циліндра, перпендикулярний до його осі. Вздовж кола перетину розмістимо всі кольори спектру. Колірному тону тоді відповідатиме кут між віссю та радіусом-вектором, проведеним в певну точку кола .
Третім параметром є насиченість (saturation) кольору. Максимум насиченості має монохромний колір, зменшення насиченості відбувається шляхом переходу від монохромного до поліхромного кольору поступовим додаванням інших складових видимого спектру в рівних долях. Зменшенню насиченості відповідає рух у напрямку центра кола вздовж його радіуса. Насиченість кольору в центрі кола дорівнює нулеві, що залежно від інтенсивності кольору відповідає тому чи іншому відтінку сірого кольору.
Система HSV зручна для управління кольором на інтуїтивному рівні, оскільки дозволяє незалежно змінювати кожен параметр кольору, а саме яскравість, насиченість і тон. Це значить, що є можливість зробити довільний тон більш або менш яскравим, більш або менш насиченим, а також перейти до сусіднього тону. В той же час зміна навіть одного з параметрів RGB приводить до набагато складніших змін у колірному складі. Дуже корисно виконати самостійно декілька експериментів з різними колірними моделями.
Чи дає адитивний синтез всі кольори видимого спектру? Це питання було поставлено у зв'язку з дослідженням можливостей катодних випромінюючих трубок ще в 30-і роки Міжнародною комісією з освітленості (CIE - Commission International d'Eclairage). Відповідь на це питання негативна. Шляхом змішування трьох кольорів одержати всі кольори технічно неможливо. Було вибрано три монохромних випромінювача, довжини хвиль яких складали відповідно 700,0; 546,1 та 435,8 нм. Та була проведена велика серія експериментів з порівняння синтезованих кольорів з кольорами виділеними із сонячного світла.
Позначимо через R, G і B випромінювання трьох основних кольорів. Тоді задача порівняння кольору довільного кольорового випромінювача C ставиться у такий спосіб: знайти кількості r основного кольору R, g - основного кольору G, b - основного кольору B, такі щоб колір C співпадав би з кольором, вираженим лінійною комбінацією
C = rR + gG + bB.
Порівняння кольорів задовольняє властивості аддитивності, а саме: нехай маємо кольори C1 = r1R + g1G + b1B та C2 = r2R + g2G + b2B. Тоді сума двох кольорів знову кольором з характеристиками C1 + C2 = r2R + g2G + b2B = (r+r1)R + (g+ g1)G + (b+ b1)B. Отже параметром кожного з трьох основних кольорів може бути будь-яка лінійна комбінація параметрів цього кольору, а в граничному переході - інтеграл. Позначимо залежність параметрів основних кольорів від довжини хвилі > через (>), (>) та (>). Розглянемо випромінювач, спектральний розподіл частот якого задано функцією S(>). Тоді числа , і , задані інтегралами
= , = і = ,
теж будуть параметрами трьох основних кольорів для деякого кольору C = R + G + B.
Експериментальним шляхом було встановлено, що існують такі кольори, для яких графіки функцій розподілу параметрів основних кольорів , та , мають вигляд, як наведено на мал. 3.9.
Серед кольорів які повинна була б задавати модель RGB, знайшлися б такі, які потребують від'ємних значень одного з параметрів трьох основних кольорів, а саме червоного. Виявилося, що цілий діапазон видимого спектру не вдається відтворити. В області зелено-голубих тонів має місце провал. Теоретична формула для відтворення голубого кольору виглядала б приблизно так:
голубий = синій + зелений.
Мал. 3.9 показує, що для повноти RGB-синтезу голубій області спектру відповідала б від'ємна інтенсивність червоного випромінювача. Щось на зразок:
голубий = синій + зелений - червоний?
Або в більш зрозумілому вигляді
голубий + червоний = синій + зелений,
який відповідає менш насиченому синьо-зеленому кольору, розбавленому білим. Звідси з'являється червона складова, як доповнення синього та зеленого до білого. Детальніше з поняттям насиченості кольору можна буде познайомитися в підрозділі 3.1.5.Виявлені недоліки моделі RGB привели до пошуків інших моделей, вільних від цих недоліків. Однією з таких моделей є CIE XYZ, розроблена в 1931 році лабораторією Міжнародної комісії з освітленості. Реальні випромінювачі R, G та B було замінено уявними X, Y та Z, яким відповідатимуть невід'ємні функції спектрального розподілу частот, показані на мал. 3.10.
Проблемою моделі CIE XYZ є її фізичне відтворення. Для виводу на екран зображення, закодоване у цій моделі, доведеться перекодувати у модель RGB, взагалі кажучи, із втратами. Ця модель використовується для зберігання високоякісних зображень, призначених як для відтворення на екрані, так і на папері, яке вимагає, взагалі кажучи, інших моделей.
Звичайно замість CIE XYZ користуються моделлю CIE xyZ або в інших позначеннях CIE Lab. До неї переходять, фіксуючи значення яскравості L та певним чином нормуючи інші дві змінні. На малюнку показані можливі значення параметрів x, y, а також подані довжини хвиль видимого спектру, що відповідатимуть кольорам, розташованим вздовж "підкови".
Співвідношення кольорів, що визначаються моделлю CIE та кольорів RGB демонструє трикутник, всередині якого находяться кольори RGB. Більше того, стверджується, вибір будь-яких інших трьох точок для аддитивного синтезу, не в стані подолати неповноту.